Properties

Label 4-684e2-1.1-c1e2-0-43
Degree $4$
Conductor $467856$
Sign $1$
Analytic cond. $29.8309$
Root an. cond. $2.33704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 6·5-s + 12·10-s + 4·13-s − 4·16-s + 2·17-s + 12·20-s + 17·25-s + 8·26-s + 4·29-s − 8·32-s + 4·34-s + 11·49-s + 34·50-s + 8·52-s − 20·53-s + 8·58-s − 2·61-s − 8·64-s + 24·65-s + 4·68-s − 22·73-s − 24·80-s + 12·85-s + 12·89-s − 20·97-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 2.68·5-s + 3.79·10-s + 1.10·13-s − 16-s + 0.485·17-s + 2.68·20-s + 17/5·25-s + 1.56·26-s + 0.742·29-s − 1.41·32-s + 0.685·34-s + 11/7·49-s + 4.80·50-s + 1.10·52-s − 2.74·53-s + 1.05·58-s − 0.256·61-s − 64-s + 2.97·65-s + 0.485·68-s − 2.57·73-s − 2.68·80-s + 1.30·85-s + 1.27·89-s − 2.03·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(467856\)    =    \(2^{4} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(29.8309\)
Root analytic conductor: \(2.33704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 467856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.104858821\)
\(L(\frac12)\) \(\approx\) \(7.104858821\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
3 \( 1 \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.742321760001961651389979974377, −8.160007849857414045140648086964, −7.43632371515983923998772054443, −6.85073886350288365363080648917, −6.29636417830616150950587212845, −6.12241751609850681792173625996, −5.80065514036351948381475791738, −5.34668146252658900228619106104, −4.91760568249510581017872290537, −4.32680757840779686690441622638, −3.67840796781373175574076394185, −2.94683125587980903660881898164, −2.61687998381550726785939862479, −1.81200784323266148009001357293, −1.34947676285250801422046885118, 1.34947676285250801422046885118, 1.81200784323266148009001357293, 2.61687998381550726785939862479, 2.94683125587980903660881898164, 3.67840796781373175574076394185, 4.32680757840779686690441622638, 4.91760568249510581017872290537, 5.34668146252658900228619106104, 5.80065514036351948381475791738, 6.12241751609850681792173625996, 6.29636417830616150950587212845, 6.85073886350288365363080648917, 7.43632371515983923998772054443, 8.160007849857414045140648086964, 8.742321760001961651389979974377

Graph of the $Z$-function along the critical line