Properties

Label 4-684e2-1.1-c1e2-0-31
Degree $4$
Conductor $467856$
Sign $1$
Analytic cond. $29.8309$
Root an. cond. $2.33704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 4·5-s + 3·8-s − 4·10-s + 12·13-s − 16-s + 12·17-s − 4·20-s + 2·25-s − 12·26-s − 4·29-s − 5·32-s − 12·34-s − 20·37-s + 12·40-s + 4·41-s − 14·49-s − 2·50-s − 12·52-s + 12·53-s + 4·58-s − 4·61-s + 7·64-s + 48·65-s − 12·68-s + 20·73-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.78·5-s + 1.06·8-s − 1.26·10-s + 3.32·13-s − 1/4·16-s + 2.91·17-s − 0.894·20-s + 2/5·25-s − 2.35·26-s − 0.742·29-s − 0.883·32-s − 2.05·34-s − 3.28·37-s + 1.89·40-s + 0.624·41-s − 2·49-s − 0.282·50-s − 1.66·52-s + 1.64·53-s + 0.525·58-s − 0.512·61-s + 7/8·64-s + 5.95·65-s − 1.45·68-s + 2.34·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(467856\)    =    \(2^{4} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(29.8309\)
Root analytic conductor: \(2.33704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 467856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.176459332\)
\(L(\frac12)\) \(\approx\) \(2.176459332\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3 \( 1 \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.700339636508216566718463872719, −8.062008804214737453511932083588, −7.962026255736907116683171399764, −7.33667434445098454643296446245, −6.39584814801769229586264060019, −6.37820814688737049661034336254, −5.69178884171323828176864961556, −5.30285359031178015236684552035, −5.22523151161492305197654101068, −3.84859941092912106278451327058, −3.69904169102384607719527879903, −3.25148783575260438600086430315, −1.95255670636420425042320954209, −1.48488050469889056862198933364, −1.07628396925620245570845051253, 1.07628396925620245570845051253, 1.48488050469889056862198933364, 1.95255670636420425042320954209, 3.25148783575260438600086430315, 3.69904169102384607719527879903, 3.84859941092912106278451327058, 5.22523151161492305197654101068, 5.30285359031178015236684552035, 5.69178884171323828176864961556, 6.37820814688737049661034336254, 6.39584814801769229586264060019, 7.33667434445098454643296446245, 7.962026255736907116683171399764, 8.062008804214737453511932083588, 8.700339636508216566718463872719

Graph of the $Z$-function along the critical line