Properties

Label 4-684e2-1.1-c1e2-0-30
Degree $4$
Conductor $467856$
Sign $1$
Analytic cond. $29.8309$
Root an. cond. $2.33704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 6·7-s − 8-s − 6·14-s + 16-s + 6·19-s + 8·25-s + 6·28-s − 2·29-s − 32-s − 6·38-s + 4·41-s + 14·49-s − 8·50-s + 4·53-s − 6·56-s + 2·58-s + 22·59-s + 6·61-s + 64-s + 14·71-s − 8·73-s + 6·76-s − 4·82-s − 18·89-s − 14·98-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 2.26·7-s − 0.353·8-s − 1.60·14-s + 1/4·16-s + 1.37·19-s + 8/5·25-s + 1.13·28-s − 0.371·29-s − 0.176·32-s − 0.973·38-s + 0.624·41-s + 2·49-s − 1.13·50-s + 0.549·53-s − 0.801·56-s + 0.262·58-s + 2.86·59-s + 0.768·61-s + 1/8·64-s + 1.66·71-s − 0.936·73-s + 0.688·76-s − 0.441·82-s − 1.90·89-s − 1.41·98-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(467856\)    =    \(2^{4} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(29.8309\)
Root analytic conductor: \(2.33704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 467856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.107044108\)
\(L(\frac12)\) \(\approx\) \(2.107044108\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
19$C_2$ \( 1 - 6 T + p T^{2} \)
good5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 56 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$ \( ( 1 + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.480397071951097656995977938439, −8.204937487402916796471567126127, −7.72815597649003185894010701457, −7.30643948175919213397419248031, −6.94611961062574371317122745374, −6.40007833640321970929961970032, −5.52976853194995048770792407391, −5.22824871432729008196169201854, −5.00849320072731861488643482828, −4.19413029953658278788964422271, −3.74275101105643100013456370998, −2.77850342901391922975757706147, −2.32434390089717673535317243558, −1.41909076861570765389036760206, −1.02630107427529193309570785201, 1.02630107427529193309570785201, 1.41909076861570765389036760206, 2.32434390089717673535317243558, 2.77850342901391922975757706147, 3.74275101105643100013456370998, 4.19413029953658278788964422271, 5.00849320072731861488643482828, 5.22824871432729008196169201854, 5.52976853194995048770792407391, 6.40007833640321970929961970032, 6.94611961062574371317122745374, 7.30643948175919213397419248031, 7.72815597649003185894010701457, 8.204937487402916796471567126127, 8.480397071951097656995977938439

Graph of the $Z$-function along the critical line