Properties

Label 4-675e2-1.1-c1e2-0-7
Degree $4$
Conductor $455625$
Sign $-1$
Analytic cond. $29.0510$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s − 10·13-s + 5·16-s − 4·19-s + 12·31-s + 10·37-s + 20·43-s − 14·49-s + 30·52-s − 22·61-s − 3·64-s + 20·73-s + 12·76-s + 24·79-s + 10·97-s − 20·103-s + 4·109-s + 3·121-s − 36·124-s + 127-s + 131-s + 137-s + 139-s − 30·148-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 3/2·4-s − 2.77·13-s + 5/4·16-s − 0.917·19-s + 2.15·31-s + 1.64·37-s + 3.04·43-s − 2·49-s + 4.16·52-s − 2.81·61-s − 3/8·64-s + 2.34·73-s + 1.37·76-s + 2.70·79-s + 1.01·97-s − 1.97·103-s + 0.383·109-s + 3/11·121-s − 3.23·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.46·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 455625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 455625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(455625\)    =    \(3^{6} \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(29.0510\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 455625,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.111291554543981630243615144391, −8.045590620524125419129335461921, −7.61064821647543776585659150038, −7.09305325128470420948222804467, −6.24877777925675414442975442826, −6.20481852631863748855544323115, −5.27951774771441848148740620672, −4.72067276749777115352779746535, −4.69824702877576535283262083774, −4.23023899623652582277153417738, −3.45045562084777234969796191815, −2.52397037751510802984424134455, −2.40058573044279568120832059087, −0.929391360715818373685365786299, 0, 0.929391360715818373685365786299, 2.40058573044279568120832059087, 2.52397037751510802984424134455, 3.45045562084777234969796191815, 4.23023899623652582277153417738, 4.69824702877576535283262083774, 4.72067276749777115352779746535, 5.27951774771441848148740620672, 6.20481852631863748855544323115, 6.24877777925675414442975442826, 7.09305325128470420948222804467, 7.61064821647543776585659150038, 8.045590620524125419129335461921, 8.111291554543981630243615144391

Graph of the $Z$-function along the critical line