Properties

Label 4-675e2-1.1-c1e2-0-18
Degree $4$
Conductor $455625$
Sign $1$
Analytic cond. $29.0510$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 4·4-s − 3·8-s + 3·16-s − 12·17-s − 4·19-s − 6·23-s − 8·31-s − 6·32-s + 36·34-s + 12·38-s + 18·46-s − 14·49-s − 24·53-s − 2·61-s + 24·62-s + 5·64-s − 48·68-s − 16·76-s − 16·79-s − 6·83-s − 24·92-s + 42·98-s + 72·106-s + 14·109-s − 22·121-s + 6·122-s + ⋯
L(s)  = 1  − 2.12·2-s + 2·4-s − 1.06·8-s + 3/4·16-s − 2.91·17-s − 0.917·19-s − 1.25·23-s − 1.43·31-s − 1.06·32-s + 6.17·34-s + 1.94·38-s + 2.65·46-s − 2·49-s − 3.29·53-s − 0.256·61-s + 3.04·62-s + 5/8·64-s − 5.82·68-s − 1.83·76-s − 1.80·79-s − 0.658·83-s − 2.50·92-s + 4.24·98-s + 6.99·106-s + 1.34·109-s − 2·121-s + 0.543·122-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 455625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 455625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(455625\)    =    \(3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(29.0510\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 455625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2^2$ \( 1 + 3 T + 5 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 12 T + 65 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 4 T - 3 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 6 T + 35 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 8 T + 33 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 24 T + 245 T^{2} + 24 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 16 T + 177 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 6 T + 95 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.989660451384092991567192162963, −9.846806652314932081194942554342, −9.262817905128557648662036611928, −9.063032592114854685808495850440, −8.541549067508522697176521220742, −8.430775478361451180134409531171, −7.70561925256738231799922053064, −7.62146689440114469921833710882, −6.73340307970039576492244038628, −6.53745925572367705019854657846, −6.12043055137277751861825322723, −5.40736753766768044370573974354, −4.49125527143314244312390003472, −4.43930060989674309234358785788, −3.54067116349947058101732812041, −2.76704267627356110074568601757, −1.87757341903363932694788708409, −1.69513718397245009221846235026, 0, 0, 1.69513718397245009221846235026, 1.87757341903363932694788708409, 2.76704267627356110074568601757, 3.54067116349947058101732812041, 4.43930060989674309234358785788, 4.49125527143314244312390003472, 5.40736753766768044370573974354, 6.12043055137277751861825322723, 6.53745925572367705019854657846, 6.73340307970039576492244038628, 7.62146689440114469921833710882, 7.70561925256738231799922053064, 8.430775478361451180134409531171, 8.541549067508522697176521220742, 9.063032592114854685808495850440, 9.262817905128557648662036611928, 9.846806652314932081194942554342, 9.989660451384092991567192162963

Graph of the $Z$-function along the critical line