Properties

Label 4-675e2-1.1-c1e2-0-15
Degree $4$
Conductor $455625$
Sign $-1$
Analytic cond. $29.0510$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s + 10·13-s + 5·16-s − 4·19-s + 12·31-s − 10·37-s − 20·43-s − 14·49-s − 30·52-s − 22·61-s − 3·64-s − 20·73-s + 12·76-s + 24·79-s − 10·97-s + 20·103-s + 4·109-s + 3·121-s − 36·124-s + 127-s + 131-s + 137-s + 139-s + 30·148-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 3/2·4-s + 2.77·13-s + 5/4·16-s − 0.917·19-s + 2.15·31-s − 1.64·37-s − 3.04·43-s − 2·49-s − 4.16·52-s − 2.81·61-s − 3/8·64-s − 2.34·73-s + 1.37·76-s + 2.70·79-s − 1.01·97-s + 1.97·103-s + 0.383·109-s + 3/11·121-s − 3.23·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.46·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 455625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 455625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(455625\)    =    \(3^{6} \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(29.0510\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 455625,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.470229778473156859055797250625, −8.110625633965123632872532116674, −7.72941864643843111924093742058, −6.65161085258324315501961849103, −6.47087996746914035408335230406, −6.14513598061725646029734075717, −5.45093501870232524860958154077, −4.84886591033793439685261848050, −4.56767724494133603201732869283, −3.97564733739679917868066949463, −3.35142569623968027183576325655, −3.18705877871324552307068063652, −1.76125584480235740498550240381, −1.22726947298899977457345127093, 0, 1.22726947298899977457345127093, 1.76125584480235740498550240381, 3.18705877871324552307068063652, 3.35142569623968027183576325655, 3.97564733739679917868066949463, 4.56767724494133603201732869283, 4.84886591033793439685261848050, 5.45093501870232524860958154077, 6.14513598061725646029734075717, 6.47087996746914035408335230406, 6.65161085258324315501961849103, 7.72941864643843111924093742058, 8.110625633965123632872532116674, 8.470229778473156859055797250625

Graph of the $Z$-function along the critical line