Properties

Label 4-672e2-1.1-c1e2-0-52
Degree $4$
Conductor $451584$
Sign $-1$
Analytic cond. $28.7933$
Root an. cond. $2.31645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s − 2·9-s + 2·13-s − 5·19-s − 21-s − 9·25-s + 5·27-s + 13·31-s + 9·37-s − 2·39-s − 8·43-s − 6·49-s + 5·57-s − 10·61-s − 2·63-s + 5·67-s − 7·73-s + 9·75-s − 5·79-s + 81-s + 2·91-s − 13·93-s − 20·97-s − 5·103-s + 109-s − 9·111-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s − 2/3·9-s + 0.554·13-s − 1.14·19-s − 0.218·21-s − 9/5·25-s + 0.962·27-s + 2.33·31-s + 1.47·37-s − 0.320·39-s − 1.21·43-s − 6/7·49-s + 0.662·57-s − 1.28·61-s − 0.251·63-s + 0.610·67-s − 0.819·73-s + 1.03·75-s − 0.562·79-s + 1/9·81-s + 0.209·91-s − 1.34·93-s − 2.03·97-s − 0.492·103-s + 0.0957·109-s − 0.854·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 451584 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(451584\)    =    \(2^{10} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(28.7933\)
Root analytic conductor: \(2.31645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 451584,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T + p T^{2} \)
7$C_2$ \( 1 - T + p T^{2} \)
good5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2^2$ \( 1 + 9 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 65 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 79 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 91 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 5 T + p T^{2} ) \)
83$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 121 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.247277482818042154141291912320, −8.105579160013656166754444943734, −7.54204460293528700852536030239, −6.76699867840699566176818344069, −6.39935893507527285041068441562, −6.06288056841579588688136936120, −5.65373091756537697952504643362, −5.04120570606109310459411765754, −4.38500845819231518228312315816, −4.23660685627201790575233059507, −3.31602836143344191565160898648, −2.75467066899842230371875721653, −2.05084442827772284983078581816, −1.18731963404767717116883968044, 0, 1.18731963404767717116883968044, 2.05084442827772284983078581816, 2.75467066899842230371875721653, 3.31602836143344191565160898648, 4.23660685627201790575233059507, 4.38500845819231518228312315816, 5.04120570606109310459411765754, 5.65373091756537697952504643362, 6.06288056841579588688136936120, 6.39935893507527285041068441562, 6.76699867840699566176818344069, 7.54204460293528700852536030239, 8.105579160013656166754444943734, 8.247277482818042154141291912320

Graph of the $Z$-function along the critical line