Properties

Label 4-666e2-1.1-c1e2-0-29
Degree $4$
Conductor $443556$
Sign $-1$
Analytic cond. $28.2815$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 5·7-s − 6·11-s + 16-s − 2·25-s − 5·28-s − 7·37-s − 3·41-s + 6·44-s + 12·47-s + 7·49-s − 12·53-s − 64-s − 7·67-s − 9·71-s − 13·73-s − 30·77-s − 6·83-s + 2·100-s + 15·101-s − 24·107-s + 5·112-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 1/2·4-s + 1.88·7-s − 1.80·11-s + 1/4·16-s − 2/5·25-s − 0.944·28-s − 1.15·37-s − 0.468·41-s + 0.904·44-s + 1.75·47-s + 49-s − 1.64·53-s − 1/8·64-s − 0.855·67-s − 1.06·71-s − 1.52·73-s − 3.41·77-s − 0.658·83-s + 1/5·100-s + 1.49·101-s − 2.32·107-s + 0.472·112-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 443556 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 443556 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(443556\)    =    \(2^{2} \cdot 3^{4} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(28.2815\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 443556,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
37$C_2$ \( 1 + 7 T + p T^{2} \)
good5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - T + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 32 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 43 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 49 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.395578161648860251431918840109, −7.897352421254262823669130339633, −7.53097257797602820565882923688, −7.32234291545755653125329158509, −6.48680973333868110491697318176, −5.77651480907957870188964312676, −5.43718582605932237480785343826, −5.02892763163288046744298888993, −4.57776032053610990715632743670, −4.21047289704946284464629968177, −3.32312081745594526576384257059, −2.72798655451542226626066913615, −1.97940733659948740649294559830, −1.38007848639479498277233592714, 0, 1.38007848639479498277233592714, 1.97940733659948740649294559830, 2.72798655451542226626066913615, 3.32312081745594526576384257059, 4.21047289704946284464629968177, 4.57776032053610990715632743670, 5.02892763163288046744298888993, 5.43718582605932237480785343826, 5.77651480907957870188964312676, 6.48680973333868110491697318176, 7.32234291545755653125329158509, 7.53097257797602820565882923688, 7.897352421254262823669130339633, 8.395578161648860251431918840109

Graph of the $Z$-function along the critical line