Properties

Label 4-650e2-1.1-c5e2-0-0
Degree $4$
Conductor $422500$
Sign $1$
Analytic cond. $10867.9$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·4-s + 486·9-s − 500·11-s + 256·16-s + 156·19-s − 5.15e3·29-s − 1.73e4·31-s − 7.77e3·36-s + 2.10e3·41-s + 8.00e3·44-s + 4.71e3·49-s + 2.78e4·59-s − 6.57e4·61-s − 4.09e3·64-s − 1.01e5·71-s − 2.49e3·76-s + 3.86e4·79-s + 1.77e5·81-s − 1.88e5·89-s − 2.43e5·99-s − 3.70e4·101-s + 3.57e5·109-s + 8.24e4·116-s − 1.34e5·121-s + 2.76e5·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s + 2·9-s − 1.24·11-s + 1/4·16-s + 0.0991·19-s − 1.13·29-s − 3.23·31-s − 36-s + 0.195·41-s + 0.622·44-s + 0.280·49-s + 1.04·59-s − 2.26·61-s − 1/8·64-s − 2.37·71-s − 0.0495·76-s + 0.697·79-s + 3·81-s − 2.52·89-s − 2.49·99-s − 0.361·101-s + 2.88·109-s + 0.569·116-s − 0.835·121-s + 1.61·124-s + 5.50e−6·127-s + 5.09e−6·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 422500 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(422500\)    =    \(2^{2} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(10867.9\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 422500,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3721922369\)
\(L(\frac12)\) \(\approx\) \(0.3721922369\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{4} T^{2} \)
5 \( 1 \)
13$C_2$ \( 1 + p^{4} T^{2} \)
good3$C_2$ \( ( 1 - p^{5} T^{2} )^{2} \)
7$C_2^2$ \( 1 - 4714 T^{2} + p^{10} T^{4} \)
11$C_2$ \( ( 1 + 250 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 1711870 T^{2} + p^{10} T^{4} \)
19$C_2$ \( ( 1 - 78 T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10388910 T^{2} + p^{10} T^{4} \)
29$C_2$ \( ( 1 + 2578 T + p^{5} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 8654 T + p^{5} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 17995718 T^{2} + p^{10} T^{4} \)
41$C_2$ \( ( 1 - 1050 T + p^{5} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 259206886 T^{2} + p^{10} T^{4} \)
47$C_2^2$ \( 1 - 423144570 T^{2} + p^{10} T^{4} \)
53$C_2^2$ \( 1 + 7279130 T^{2} + p^{10} T^{4} \)
59$C_2$ \( ( 1 - 13922 T + p^{5} T^{2} )^{2} \)
61$C_2$ \( ( 1 + 32882 T + p^{5} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 2139178142 T^{2} + p^{10} T^{4} \)
71$C_2$ \( ( 1 + 50542 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 1960580686 T^{2} + p^{10} T^{4} \)
79$C_2$ \( ( 1 - 19348 T + p^{5} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 232677442 T^{2} + p^{10} T^{4} \)
89$C_2$ \( ( 1 + 94170 T + p^{5} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 16236041282 T^{2} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20342167150840282451778053937, −9.338332789163391110963464133790, −9.327414086266412821706191588042, −8.881311486413362419027762561393, −8.156622463232810170321130873854, −7.62842051931812832181152162594, −7.38754431193185287615937658385, −7.19458845854385260263934825074, −6.49492079448778504743548669428, −5.81876445239945086251291291849, −5.36825008280670522608614138551, −5.09010932719553827065645751240, −4.24330809710752194713377085436, −4.18269143092090988590227267580, −3.48944317235194583476508427491, −2.94276659651090590896011864796, −1.99381650084970716669695554880, −1.73768026712978313587296239269, −1.06935338525208003745537233715, −0.13907298106046146538449847430, 0.13907298106046146538449847430, 1.06935338525208003745537233715, 1.73768026712978313587296239269, 1.99381650084970716669695554880, 2.94276659651090590896011864796, 3.48944317235194583476508427491, 4.18269143092090988590227267580, 4.24330809710752194713377085436, 5.09010932719553827065645751240, 5.36825008280670522608614138551, 5.81876445239945086251291291849, 6.49492079448778504743548669428, 7.19458845854385260263934825074, 7.38754431193185287615937658385, 7.62842051931812832181152162594, 8.156622463232810170321130873854, 8.881311486413362419027762561393, 9.327414086266412821706191588042, 9.338332789163391110963464133790, 10.20342167150840282451778053937

Graph of the $Z$-function along the critical line