Properties

Label 4-648e2-1.1-c1e2-0-3
Degree $4$
Conductor $419904$
Sign $1$
Analytic cond. $26.7734$
Root an. cond. $2.27471$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·11-s + 2·13-s − 4·17-s − 8·19-s − 8·23-s + 5·25-s + 6·29-s − 8·31-s + 12·37-s − 6·41-s − 4·43-s + 7·49-s + 4·53-s − 8·55-s + 4·59-s + 2·61-s − 4·65-s + 4·67-s − 16·71-s + 20·73-s + 8·79-s − 4·83-s + 8·85-s + 12·89-s + 16·95-s − 2·97-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.20·11-s + 0.554·13-s − 0.970·17-s − 1.83·19-s − 1.66·23-s + 25-s + 1.11·29-s − 1.43·31-s + 1.97·37-s − 0.937·41-s − 0.609·43-s + 49-s + 0.549·53-s − 1.07·55-s + 0.520·59-s + 0.256·61-s − 0.496·65-s + 0.488·67-s − 1.89·71-s + 2.34·73-s + 0.900·79-s − 0.439·83-s + 0.867·85-s + 1.27·89-s + 1.64·95-s − 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 419904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 419904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(419904\)    =    \(2^{6} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(26.7734\)
Root analytic conductor: \(2.27471\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 419904,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.263001892\)
\(L(\frac12)\) \(\approx\) \(1.263001892\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 4 T + 5 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 8 T + 41 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 6 T + 7 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 8 T + 33 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 4 T - 27 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 4 T - 43 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 2 T - 57 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 4 T - 51 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 8 T - 15 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 4 T - 67 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 2 T - 93 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79136450462894180523473862426, −10.39364945474135883701952701496, −10.03990724943601265756739972569, −9.228785968814071162613509608709, −9.091511287807946275349639651779, −8.572771034830756329105478232988, −8.118841486681787115399695592518, −7.958739800770420305055354198236, −7.13723303190089553070670520054, −6.58556329768194161716179141707, −6.56281557415033051199783292596, −5.94282249146933867362057864076, −5.32243520848985869924111779925, −4.49268408687844431066816523150, −4.14448695326889604007949906289, −3.95848441804194632447127503776, −3.22565559483863579379392605700, −2.32944008006588739182324639947, −1.78851140451292107198070039481, −0.61352758754528296354893035184, 0.61352758754528296354893035184, 1.78851140451292107198070039481, 2.32944008006588739182324639947, 3.22565559483863579379392605700, 3.95848441804194632447127503776, 4.14448695326889604007949906289, 4.49268408687844431066816523150, 5.32243520848985869924111779925, 5.94282249146933867362057864076, 6.56281557415033051199783292596, 6.58556329768194161716179141707, 7.13723303190089553070670520054, 7.958739800770420305055354198236, 8.118841486681787115399695592518, 8.572771034830756329105478232988, 9.091511287807946275349639651779, 9.228785968814071162613509608709, 10.03990724943601265756739972569, 10.39364945474135883701952701496, 10.79136450462894180523473862426

Graph of the $Z$-function along the critical line