Properties

Label 4-648675-1.1-c1e2-0-1
Degree $4$
Conductor $648675$
Sign $1$
Analytic cond. $41.3600$
Root an. cond. $2.53597$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·4-s + 9-s + 8·11-s − 3·12-s + 5·16-s − 4·17-s + 8·19-s + 25-s + 27-s + 4·29-s + 8·33-s − 3·36-s − 24·44-s + 5·48-s − 14·49-s − 4·51-s + 20·53-s + 8·57-s − 3·64-s + 24·67-s + 12·68-s + 75-s − 24·76-s + 81-s − 24·83-s + 4·87-s + ⋯
L(s)  = 1  + 0.577·3-s − 3/2·4-s + 1/3·9-s + 2.41·11-s − 0.866·12-s + 5/4·16-s − 0.970·17-s + 1.83·19-s + 1/5·25-s + 0.192·27-s + 0.742·29-s + 1.39·33-s − 1/2·36-s − 3.61·44-s + 0.721·48-s − 2·49-s − 0.560·51-s + 2.74·53-s + 1.05·57-s − 3/8·64-s + 2.93·67-s + 1.45·68-s + 0.115·75-s − 2.75·76-s + 1/9·81-s − 2.63·83-s + 0.428·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648675 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648675 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(648675\)    =    \(3^{3} \cdot 5^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(41.3600\)
Root analytic conductor: \(2.53597\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 648675,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.113713401\)
\(L(\frac12)\) \(\approx\) \(2.113713401\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
31$C_2$ \( 1 + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.554588868470699894187777077269, −8.171383858653182102218519209206, −7.48835909615996771691369301256, −6.89399677945660974091495871190, −6.76955885158912340897756950945, −6.12735884290641290480561231131, −5.46521203015847388109903840618, −5.04860090093668311608273372623, −4.44292527180552424855002162395, −4.12230566646888283690358404375, −3.63412818236731287070311550143, −3.24109761070285915353404768289, −2.33366107548066026326855143182, −1.38363062337439954492993809497, −0.832782540282442584365725306759, 0.832782540282442584365725306759, 1.38363062337439954492993809497, 2.33366107548066026326855143182, 3.24109761070285915353404768289, 3.63412818236731287070311550143, 4.12230566646888283690358404375, 4.44292527180552424855002162395, 5.04860090093668311608273372623, 5.46521203015847388109903840618, 6.12735884290641290480561231131, 6.76955885158912340897756950945, 6.89399677945660974091495871190, 7.48835909615996771691369301256, 8.171383858653182102218519209206, 8.554588868470699894187777077269

Graph of the $Z$-function along the critical line