Properties

Label 4-64827-1.1-c1e2-0-7
Degree $4$
Conductor $64827$
Sign $-1$
Analytic cond. $4.13342$
Root an. cond. $1.42586$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·5-s − 2·6-s − 4·8-s + 9-s + 4·10-s − 2·11-s − 8·13-s − 2·15-s − 4·16-s + 2·18-s − 8·19-s − 4·22-s + 4·24-s − 6·25-s − 16·26-s − 27-s + 4·29-s − 4·30-s − 16·31-s + 2·33-s + 2·37-s − 16·38-s + 8·39-s − 8·40-s + 10·41-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 0.894·5-s − 0.816·6-s − 1.41·8-s + 1/3·9-s + 1.26·10-s − 0.603·11-s − 2.21·13-s − 0.516·15-s − 16-s + 0.471·18-s − 1.83·19-s − 0.852·22-s + 0.816·24-s − 6/5·25-s − 3.13·26-s − 0.192·27-s + 0.742·29-s − 0.730·30-s − 2.87·31-s + 0.348·33-s + 0.328·37-s − 2.59·38-s + 1.28·39-s − 1.26·40-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64827 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64827 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(64827\)    =    \(3^{3} \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(4.13342\)
Root analytic conductor: \(1.42586\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 64827,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
7 \( 1 \)
good2$C_2$$\times$$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T^{2} ) \)
5$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
47$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.5943800716, −14.2932398855, −13.8877947999, −13.0504144744, −13.0238540988, −12.6469887717, −12.4086664145, −11.6591047367, −11.3016282861, −10.4434096149, −10.2813603514, −9.75101739390, −9.09256398356, −8.94737293191, −7.99137209561, −7.29485403541, −7.07511528959, −6.01621490935, −5.72591573809, −5.40855511243, −4.78354615731, −4.18739539623, −3.87851392966, −2.47062022888, −2.26817487862, 0, 2.26817487862, 2.47062022888, 3.87851392966, 4.18739539623, 4.78354615731, 5.40855511243, 5.72591573809, 6.01621490935, 7.07511528959, 7.29485403541, 7.99137209561, 8.94737293191, 9.09256398356, 9.75101739390, 10.2813603514, 10.4434096149, 11.3016282861, 11.6591047367, 12.4086664145, 12.6469887717, 13.0238540988, 13.0504144744, 13.8877947999, 14.2932398855, 14.5943800716

Graph of the $Z$-function along the critical line