Properties

Label 4-64827-1.1-c1e2-0-5
Degree $4$
Conductor $64827$
Sign $-1$
Analytic cond. $4.13342$
Root an. cond. $1.42586$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·5-s + 9-s − 4·15-s − 4·16-s + 2·25-s + 27-s + 6·37-s − 20·41-s + 10·43-s − 4·45-s − 12·47-s − 4·48-s − 24·59-s − 10·67-s + 2·75-s − 2·79-s + 16·80-s + 81-s + 12·83-s + 32·89-s + 4·101-s + 18·109-s + 6·111-s − 18·121-s − 20·123-s + 28·125-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.78·5-s + 1/3·9-s − 1.03·15-s − 16-s + 2/5·25-s + 0.192·27-s + 0.986·37-s − 3.12·41-s + 1.52·43-s − 0.596·45-s − 1.75·47-s − 0.577·48-s − 3.12·59-s − 1.22·67-s + 0.230·75-s − 0.225·79-s + 1.78·80-s + 1/9·81-s + 1.31·83-s + 3.39·89-s + 0.398·101-s + 1.72·109-s + 0.569·111-s − 1.63·121-s − 1.80·123-s + 2.50·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64827 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64827 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(64827\)    =    \(3^{3} \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(4.13342\)
Root analytic conductor: \(1.42586\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 64827,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
7 \( 1 \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
79$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.532401741076686225901695719699, −8.970613305827843910423804944183, −8.693773060427938478692796817657, −7.920026489093004352764513852408, −7.67583845212820398533569804897, −7.42251681884249141719743547364, −6.39199342358304616891806651452, −6.33310252534575837626677109971, −4.96455995261269316221263952539, −4.73946994522750223509171420340, −3.92756051958450667801160124862, −3.54901712994340686137812719330, −2.81502084362613660119824052187, −1.75196450155362895800400842510, 0, 1.75196450155362895800400842510, 2.81502084362613660119824052187, 3.54901712994340686137812719330, 3.92756051958450667801160124862, 4.73946994522750223509171420340, 4.96455995261269316221263952539, 6.33310252534575837626677109971, 6.39199342358304616891806651452, 7.42251681884249141719743547364, 7.67583845212820398533569804897, 7.920026489093004352764513852408, 8.693773060427938478692796817657, 8.970613305827843910423804944183, 9.532401741076686225901695719699

Graph of the $Z$-function along the critical line