L(s) = 1 | + 3-s − 4·5-s + 9-s − 4·15-s − 4·16-s + 2·25-s + 27-s + 6·37-s − 20·41-s + 10·43-s − 4·45-s − 12·47-s − 4·48-s − 24·59-s − 10·67-s + 2·75-s − 2·79-s + 16·80-s + 81-s + 12·83-s + 32·89-s + 4·101-s + 18·109-s + 6·111-s − 18·121-s − 20·123-s + 28·125-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.78·5-s + 1/3·9-s − 1.03·15-s − 16-s + 2/5·25-s + 0.192·27-s + 0.986·37-s − 3.12·41-s + 1.52·43-s − 0.596·45-s − 1.75·47-s − 0.577·48-s − 3.12·59-s − 1.22·67-s + 0.230·75-s − 0.225·79-s + 1.78·80-s + 1/9·81-s + 1.31·83-s + 3.39·89-s + 0.398·101-s + 1.72·109-s + 0.569·111-s − 1.63·121-s − 1.80·123-s + 2.50·125-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 64827 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64827 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | $C_1$ | \( 1 - T \) |
| 7 | | \( 1 \) |
good | 2 | $C_2$ | \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \) |
| 5 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 5 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 + 5 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 - 16 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.532401741076686225901695719699, −8.970613305827843910423804944183, −8.693773060427938478692796817657, −7.920026489093004352764513852408, −7.67583845212820398533569804897, −7.42251681884249141719743547364, −6.39199342358304616891806651452, −6.33310252534575837626677109971, −4.96455995261269316221263952539, −4.73946994522750223509171420340, −3.92756051958450667801160124862, −3.54901712994340686137812719330, −2.81502084362613660119824052187, −1.75196450155362895800400842510, 0,
1.75196450155362895800400842510, 2.81502084362613660119824052187, 3.54901712994340686137812719330, 3.92756051958450667801160124862, 4.73946994522750223509171420340, 4.96455995261269316221263952539, 6.33310252534575837626677109971, 6.39199342358304616891806651452, 7.42251681884249141719743547364, 7.67583845212820398533569804897, 7.920026489093004352764513852408, 8.693773060427938478692796817657, 8.970613305827843910423804944183, 9.532401741076686225901695719699