Properties

Label 4-64827-1.1-c1e2-0-3
Degree $4$
Conductor $64827$
Sign $-1$
Analytic cond. $4.13342$
Root an. cond. $1.42586$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s − 4·5-s + 9-s − 12-s + 4·15-s − 3·16-s + 4·17-s − 4·20-s + 6·25-s − 27-s + 36-s + 4·37-s + 4·41-s − 8·43-s − 4·45-s − 16·47-s + 3·48-s − 4·51-s − 8·59-s + 4·60-s − 7·64-s − 8·67-s + 4·68-s − 6·75-s + 12·80-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/2·4-s − 1.78·5-s + 1/3·9-s − 0.288·12-s + 1.03·15-s − 3/4·16-s + 0.970·17-s − 0.894·20-s + 6/5·25-s − 0.192·27-s + 1/6·36-s + 0.657·37-s + 0.624·41-s − 1.21·43-s − 0.596·45-s − 2.33·47-s + 0.433·48-s − 0.560·51-s − 1.04·59-s + 0.516·60-s − 7/8·64-s − 0.977·67-s + 0.485·68-s − 0.692·75-s + 1.34·80-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64827 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64827 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(64827\)    =    \(3^{3} \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(4.13342\)
Root analytic conductor: \(1.42586\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 64827,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
7 \( 1 \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.698223626536844325957221893577, −9.166413921251398402501648146432, −8.451250846047373159735122750477, −7.909404764979961692250342151734, −7.71727710509481961360736996674, −7.06949902462298002679091800838, −6.61885560247283937341370127897, −6.05280851814515950319512149656, −5.28963474878067664613973490473, −4.64913877666350581776645513241, −4.15612071791617709049738843477, −3.45591764213572954828675776871, −2.82787864773804551728997226277, −1.51807799863530483435123120604, 0, 1.51807799863530483435123120604, 2.82787864773804551728997226277, 3.45591764213572954828675776871, 4.15612071791617709049738843477, 4.64913877666350581776645513241, 5.28963474878067664613973490473, 6.05280851814515950319512149656, 6.61885560247283937341370127897, 7.06949902462298002679091800838, 7.71727710509481961360736996674, 7.909404764979961692250342151734, 8.451250846047373159735122750477, 9.166413921251398402501648146432, 9.698223626536844325957221893577

Graph of the $Z$-function along the critical line