Properties

Label 4-6480e2-1.1-c1e2-0-8
Degree $4$
Conductor $41990400$
Sign $1$
Analytic cond. $2677.34$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 4·7-s − 4·11-s − 4·13-s + 8·17-s + 4·19-s − 4·23-s + 3·25-s + 10·29-s + 4·31-s + 8·35-s + 6·41-s + 16·43-s − 4·47-s + 49-s + 12·53-s + 8·55-s − 8·59-s − 10·61-s + 8·65-s − 16·67-s − 12·71-s + 16·77-s − 24·79-s + 16·83-s − 16·85-s − 6·89-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.51·7-s − 1.20·11-s − 1.10·13-s + 1.94·17-s + 0.917·19-s − 0.834·23-s + 3/5·25-s + 1.85·29-s + 0.718·31-s + 1.35·35-s + 0.937·41-s + 2.43·43-s − 0.583·47-s + 1/7·49-s + 1.64·53-s + 1.07·55-s − 1.04·59-s − 1.28·61-s + 0.992·65-s − 1.95·67-s − 1.42·71-s + 1.82·77-s − 2.70·79-s + 1.75·83-s − 1.73·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(41990400\)    =    \(2^{8} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2677.34\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 41990400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
good7$D_{4}$ \( 1 + 4 T + 15 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 8 T + 38 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$D_{4}$ \( 1 + 4 T + 47 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T + 71 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 6 T + 43 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 16 T + 138 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 4 T + 95 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$D_{4}$ \( 1 + 8 T + 26 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 10 T + 135 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 16 T + 195 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 12 T + 166 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 24 T + 290 T^{2} + 24 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 16 T + 203 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 6 T + 139 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 4 T + 150 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70499235356185049090524137752, −7.61212519816430136191225311041, −7.08980046868728208480659429880, −7.08573944995097243391843678326, −6.23719803527863831631338257389, −6.19510100015311410835839138985, −5.59256184134279425860514787242, −5.56223014607784971367768356097, −4.91106773226966831728154889121, −4.55059922427790729891127204867, −4.23960367172535799504270483431, −3.79449599467178956787808186237, −3.13197519027158957337969608459, −3.07065888313650283815987494874, −2.65377021339964261811604639497, −2.46208992163732046267157731898, −1.22767605720874635217944860433, −1.08962072755833382167897291675, 0, 0, 1.08962072755833382167897291675, 1.22767605720874635217944860433, 2.46208992163732046267157731898, 2.65377021339964261811604639497, 3.07065888313650283815987494874, 3.13197519027158957337969608459, 3.79449599467178956787808186237, 4.23960367172535799504270483431, 4.55059922427790729891127204867, 4.91106773226966831728154889121, 5.56223014607784971367768356097, 5.59256184134279425860514787242, 6.19510100015311410835839138985, 6.23719803527863831631338257389, 7.08573944995097243391843678326, 7.08980046868728208480659429880, 7.61212519816430136191225311041, 7.70499235356185049090524137752

Graph of the $Z$-function along the critical line