Properties

Label 4-6480e2-1.1-c1e2-0-7
Degree $4$
Conductor $41990400$
Sign $1$
Analytic cond. $2677.34$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 6·7-s + 8·11-s − 4·13-s − 2·17-s − 2·19-s + 3·25-s − 4·29-s + 6·31-s + 12·35-s − 2·37-s − 4·41-s + 10·43-s + 14·47-s + 16·49-s + 10·53-s + 16·55-s + 20·59-s + 8·61-s − 8·65-s + 4·71-s + 2·73-s + 48·77-s − 24·79-s + 6·83-s − 4·85-s − 24·91-s + ⋯
L(s)  = 1  + 0.894·5-s + 2.26·7-s + 2.41·11-s − 1.10·13-s − 0.485·17-s − 0.458·19-s + 3/5·25-s − 0.742·29-s + 1.07·31-s + 2.02·35-s − 0.328·37-s − 0.624·41-s + 1.52·43-s + 2.04·47-s + 16/7·49-s + 1.37·53-s + 2.15·55-s + 2.60·59-s + 1.02·61-s − 0.992·65-s + 0.474·71-s + 0.234·73-s + 5.47·77-s − 2.70·79-s + 0.658·83-s − 0.433·85-s − 2.51·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(41990400\)    =    \(2^{8} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2677.34\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 41990400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.566769495\)
\(L(\frac12)\) \(\approx\) \(7.566769495\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$D_{4}$ \( 1 - 6 T + 20 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 8 T + 35 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 2 T + 32 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 2 T + 27 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 35 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
37$D_{4}$ \( 1 + 2 T + 72 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T + 59 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 10 T + 84 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 14 T + 140 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 10 T + 128 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 20 T + 215 T^{2} - 20 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 122 T^{2} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 4 T + 143 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 2 T + 72 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 24 T + 290 T^{2} + 24 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 6 T + 148 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 151 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 2 T + 120 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.257732955305661071194815901146, −7.83212548830848661788801858763, −7.41454050442794743012981094168, −7.15263532728323849872830116358, −6.69803304949064143157976791002, −6.65404195137658875818003257071, −5.89940897309354659045703174434, −5.78369491055284435248755022553, −5.23927834504333523603928498456, −5.09011276534072940114270134798, −4.42858641733139790131815979186, −4.37394895455854117977047305371, −3.87922375646003223007308422966, −3.69018113547460033703331677457, −2.56199138821887536200673288295, −2.53851181793399744860707672988, −1.94141679084746957151344141938, −1.69390198017959022774483475940, −1.07503316483974931512592461512, −0.77903632400619241696552040506, 0.77903632400619241696552040506, 1.07503316483974931512592461512, 1.69390198017959022774483475940, 1.94141679084746957151344141938, 2.53851181793399744860707672988, 2.56199138821887536200673288295, 3.69018113547460033703331677457, 3.87922375646003223007308422966, 4.37394895455854117977047305371, 4.42858641733139790131815979186, 5.09011276534072940114270134798, 5.23927834504333523603928498456, 5.78369491055284435248755022553, 5.89940897309354659045703174434, 6.65404195137658875818003257071, 6.69803304949064143157976791002, 7.15263532728323849872830116358, 7.41454050442794743012981094168, 7.83212548830848661788801858763, 8.257732955305661071194815901146

Graph of the $Z$-function along the critical line