Properties

Label 4-6480e2-1.1-c1e2-0-4
Degree $4$
Conductor $41990400$
Sign $1$
Analytic cond. $2677.34$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 4·7-s + 4·13-s + 2·19-s + 6·23-s + 3·25-s − 4·31-s − 8·35-s + 16·37-s − 4·43-s + 6·47-s + 49-s − 18·53-s + 4·61-s + 8·65-s − 16·67-s + 12·71-s − 8·73-s + 8·79-s + 24·83-s + 24·89-s − 16·91-s + 4·95-s + 16·97-s − 12·101-s + 20·103-s + 24·107-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.51·7-s + 1.10·13-s + 0.458·19-s + 1.25·23-s + 3/5·25-s − 0.718·31-s − 1.35·35-s + 2.63·37-s − 0.609·43-s + 0.875·47-s + 1/7·49-s − 2.47·53-s + 0.512·61-s + 0.992·65-s − 1.95·67-s + 1.42·71-s − 0.936·73-s + 0.900·79-s + 2.63·83-s + 2.54·89-s − 1.67·91-s + 0.410·95-s + 1.62·97-s − 1.19·101-s + 1.97·103-s + 2.32·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(41990400\)    =    \(2^{8} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2677.34\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 41990400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.861118771\)
\(L(\frac12)\) \(\approx\) \(3.861118771\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$D_{4}$ \( 1 + 4 T + 15 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 4 T + 27 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 2 T - 9 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 6 T + 43 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T + 78 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 6 T + 91 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 18 T + 175 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 43 T^{2} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$D_{4}$ \( 1 + 8 T + 54 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 8 T + 66 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 24 T + 298 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$D_{4}$ \( 1 - 16 T + 210 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.197285997615300830375974048381, −7.81954393643078066454034022857, −7.34931342603331488401936437746, −7.22699076806315844693263866293, −6.51468662645145753252418346731, −6.41697480664872051245282984620, −6.07082437892846404404910559051, −5.99243939984286688903532971375, −5.43431451567671090978770380573, −4.84663124938125165389894799694, −4.78929914382997569730204983240, −4.21796911302626611004598862950, −3.49988654084750094469624131866, −3.43358109148721695463216454045, −3.05528812677609273491182678646, −2.65193786923731171444655459082, −1.99381315136792885981583950205, −1.68679312723488129557104913657, −0.813472835380244922495323187130, −0.66188319967947064809871692706, 0.66188319967947064809871692706, 0.813472835380244922495323187130, 1.68679312723488129557104913657, 1.99381315136792885981583950205, 2.65193786923731171444655459082, 3.05528812677609273491182678646, 3.43358109148721695463216454045, 3.49988654084750094469624131866, 4.21796911302626611004598862950, 4.78929914382997569730204983240, 4.84663124938125165389894799694, 5.43431451567671090978770380573, 5.99243939984286688903532971375, 6.07082437892846404404910559051, 6.41697480664872051245282984620, 6.51468662645145753252418346731, 7.22699076806315844693263866293, 7.34931342603331488401936437746, 7.81954393643078066454034022857, 8.197285997615300830375974048381

Graph of the $Z$-function along the critical line