Properties

Label 4-6480e2-1.1-c1e2-0-11
Degree $4$
Conductor $41990400$
Sign $1$
Analytic cond. $2677.34$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·7-s − 4·17-s + 4·19-s + 10·23-s + 3·25-s + 6·29-s − 12·31-s + 4·35-s − 12·37-s − 10·41-s − 4·43-s + 14·47-s − 5·49-s − 4·53-s + 12·59-s − 6·61-s + 2·67-s + 8·73-s + 4·79-s + 6·83-s + 8·85-s − 14·89-s − 8·95-s + 4·97-s − 4·101-s − 20·103-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.755·7-s − 0.970·17-s + 0.917·19-s + 2.08·23-s + 3/5·25-s + 1.11·29-s − 2.15·31-s + 0.676·35-s − 1.97·37-s − 1.56·41-s − 0.609·43-s + 2.04·47-s − 5/7·49-s − 0.549·53-s + 1.56·59-s − 0.768·61-s + 0.244·67-s + 0.936·73-s + 0.450·79-s + 0.658·83-s + 0.867·85-s − 1.48·89-s − 0.820·95-s + 0.406·97-s − 0.398·101-s − 1.97·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(41990400\)    =    \(2^{8} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2677.34\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 41990400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
good7$D_{4}$ \( 1 + 2 T + 9 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 10 T + 65 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 6 T + 43 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 12 T + 74 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$D_{4}$ \( 1 + 10 T + 83 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T - 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 14 T + 137 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 12 T + 130 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 - 2 T - 15 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 8 T + 66 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 4 T + 138 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 6 T + 169 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 14 T + 131 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61259979343361470049431124958, −7.48476875566517662747041628670, −7.05670769903213810545746249503, −6.92956651314078003575769993649, −6.48506032629016623094252798351, −6.32061538772238072790485298279, −5.45191405024685199131736079253, −5.37627893894708399244255225938, −4.97423659981177996555444549650, −4.72597201617999733469843463947, −4.09740363913011287335324522534, −3.65939877446870327049414797839, −3.40087577282262531337233081886, −3.22156468883634681010563923872, −2.48013527449490758236571527159, −2.28369580479480489476430218731, −1.32234569409703140399230656624, −1.14532498936158647876673186615, 0, 0, 1.14532498936158647876673186615, 1.32234569409703140399230656624, 2.28369580479480489476430218731, 2.48013527449490758236571527159, 3.22156468883634681010563923872, 3.40087577282262531337233081886, 3.65939877446870327049414797839, 4.09740363913011287335324522534, 4.72597201617999733469843463947, 4.97423659981177996555444549650, 5.37627893894708399244255225938, 5.45191405024685199131736079253, 6.32061538772238072790485298279, 6.48506032629016623094252798351, 6.92956651314078003575769993649, 7.05670769903213810545746249503, 7.48476875566517662747041628670, 7.61259979343361470049431124958

Graph of the $Z$-function along the critical line