Properties

Label 4-6480e2-1.1-c1e2-0-0
Degree $4$
Conductor $41990400$
Sign $1$
Analytic cond. $2677.34$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·7-s − 4·11-s − 4·13-s + 2·17-s − 2·19-s + 8·23-s + 3·25-s + 4·29-s − 2·31-s − 4·35-s − 18·37-s + 12·41-s − 2·43-s + 14·47-s − 8·49-s + 6·53-s + 8·55-s − 8·59-s − 16·61-s + 8·65-s + 8·67-s − 6·73-s − 8·77-s + 24·79-s − 2·83-s − 4·85-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.755·7-s − 1.20·11-s − 1.10·13-s + 0.485·17-s − 0.458·19-s + 1.66·23-s + 3/5·25-s + 0.742·29-s − 0.359·31-s − 0.676·35-s − 2.95·37-s + 1.87·41-s − 0.304·43-s + 2.04·47-s − 8/7·49-s + 0.824·53-s + 1.07·55-s − 1.04·59-s − 2.04·61-s + 0.992·65-s + 0.977·67-s − 0.702·73-s − 0.911·77-s + 2.70·79-s − 0.219·83-s − 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41990400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(41990400\)    =    \(2^{8} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2677.34\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 41990400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.718467964\)
\(L(\frac12)\) \(\approx\) \(1.718467964\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 + T )^{2} \)
good7$D_{4}$ \( 1 - 2 T + 12 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 4 T + 23 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 2 T + 8 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$D_{4}$ \( 1 - 8 T + 50 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 4 T + 59 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 2 T + 51 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 18 T + 152 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 12 T + 115 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 2 T + 60 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 14 T + 140 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 6 T + 112 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 8 T + 107 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 16 T + 138 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 8 T + 138 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 6 T + 152 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 24 T + 290 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 2 T + 20 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 151 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 10 T + 192 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.918025598287048478910708342389, −7.88844523133213342571001984695, −7.51523540722740531308229735915, −7.30208932756713156689212183245, −6.80833676360941579980853565176, −6.69903899654039129997826940152, −5.84328733303433553313599757849, −5.77932795454930521914528554029, −5.10437856669328546025386083364, −5.01672255524414441883629256536, −4.56586654896427264561337373447, −4.50330550232490266598249739021, −3.56644737974680007462469442914, −3.56577772550821078556392988825, −2.87745437051693930374776064746, −2.67651309792834512550544128024, −2.05799637988956917764669274331, −1.66836285028455817991965921129, −0.857716565104014821301964236767, −0.41008447588596848187422579742, 0.41008447588596848187422579742, 0.857716565104014821301964236767, 1.66836285028455817991965921129, 2.05799637988956917764669274331, 2.67651309792834512550544128024, 2.87745437051693930374776064746, 3.56577772550821078556392988825, 3.56644737974680007462469442914, 4.50330550232490266598249739021, 4.56586654896427264561337373447, 5.01672255524414441883629256536, 5.10437856669328546025386083364, 5.77932795454930521914528554029, 5.84328733303433553313599757849, 6.69903899654039129997826940152, 6.80833676360941579980853565176, 7.30208932756713156689212183245, 7.51523540722740531308229735915, 7.88844523133213342571001984695, 7.918025598287048478910708342389

Graph of the $Z$-function along the critical line