Properties

Label 4-63e4-1.1-c0e2-0-11
Degree $4$
Conductor $15752961$
Sign $1$
Analytic cond. $3.92352$
Root an. cond. $1.40740$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 3·13-s + 2·25-s − 3·31-s − 37-s − 43-s + 3·52-s + 3·61-s − 64-s + 67-s + 79-s + 3·97-s + 2·100-s − 109-s − 2·121-s − 3·124-s + 127-s + 131-s + 137-s + 139-s − 148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5·169-s + ⋯
L(s)  = 1  + 4-s + 3·13-s + 2·25-s − 3·31-s − 37-s − 43-s + 3·52-s + 3·61-s − 64-s + 67-s + 79-s + 3·97-s + 2·100-s − 109-s − 2·121-s − 3·124-s + 127-s + 131-s + 137-s + 139-s − 148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15752961 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15752961 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15752961\)    =    \(3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3.92352\)
Root analytic conductor: \(1.40740\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15752961,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.359276947\)
\(L(\frac12)\) \(\approx\) \(2.359276947\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.873187281100141177641773149947, −8.488633838646607235813003965186, −8.093556139875731936879771478104, −7.80075252924838030355791552784, −7.15261515896159011067601935442, −6.84981517408924346700867204470, −6.77366855644605466750994712019, −6.29974580381200253090656770581, −5.93867407403977119652919655640, −5.56371046908188918456572519489, −5.01392596827841682014063889009, −4.96477954992769936883061203332, −3.86665799230948920283244248292, −3.79591428457002125219018750350, −3.55601717595189937183127828890, −3.00137710005122716160463668300, −2.40538823173229163531696321226, −1.88536883880065982094522310803, −1.46707539226908886210842240472, −0.929211114693954615932929221806, 0.929211114693954615932929221806, 1.46707539226908886210842240472, 1.88536883880065982094522310803, 2.40538823173229163531696321226, 3.00137710005122716160463668300, 3.55601717595189937183127828890, 3.79591428457002125219018750350, 3.86665799230948920283244248292, 4.96477954992769936883061203332, 5.01392596827841682014063889009, 5.56371046908188918456572519489, 5.93867407403977119652919655640, 6.29974580381200253090656770581, 6.77366855644605466750994712019, 6.84981517408924346700867204470, 7.15261515896159011067601935442, 7.80075252924838030355791552784, 8.093556139875731936879771478104, 8.488633838646607235813003965186, 8.873187281100141177641773149947

Graph of the $Z$-function along the critical line