Properties

Label 4-63e4-1.1-c0e2-0-1
Degree $4$
Conductor $15752961$
Sign $1$
Analytic cond. $3.92352$
Root an. cond. $1.40740$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 3·13-s + 3·16-s − 25-s − 37-s − 43-s + 6·52-s − 4·64-s − 2·67-s − 2·79-s − 3·97-s + 2·100-s − 3·103-s − 109-s + 121-s + 127-s + 131-s + 137-s + 139-s + 2·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5·169-s + 2·172-s + ⋯
L(s)  = 1  − 2·4-s − 3·13-s + 3·16-s − 25-s − 37-s − 43-s + 6·52-s − 4·64-s − 2·67-s − 2·79-s − 3·97-s + 2·100-s − 3·103-s − 109-s + 121-s + 127-s + 131-s + 137-s + 139-s + 2·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5·169-s + 2·172-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15752961 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15752961 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15752961\)    =    \(3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3.92352\)
Root analytic conductor: \(1.40740\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 15752961,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.09980103729\)
\(L(\frac12)\) \(\approx\) \(0.09980103729\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$C_2$ \( ( 1 + T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2^2$ \( 1 - T^{2} + T^{4} \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_2^2$ \( 1 - T^{2} + T^{4} \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 + T + T^{2} )^{2} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 + T + T^{2} )^{2} \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.874704509138622740975186719162, −8.320087252737047204775071169508, −8.257049266024404746902099561890, −7.75438943832620766636523381249, −7.48791100877396169877378558219, −6.97759157012361549302620265784, −6.87314913958770415880115059590, −6.06205324974830449028876963511, −5.64151934250159073352078862002, −5.26684051917615546558072143272, −5.18834549104157655629253304149, −4.49275503056605956887332218662, −4.48396005193632839091050347703, −4.01482350365401495404561296657, −3.50975103312707165147560332916, −2.82359833109246826892104935142, −2.74931456438650015158566341570, −1.83539030818223934807081725093, −1.37018080199409848013997780386, −0.18576498621895713272144128640, 0.18576498621895713272144128640, 1.37018080199409848013997780386, 1.83539030818223934807081725093, 2.74931456438650015158566341570, 2.82359833109246826892104935142, 3.50975103312707165147560332916, 4.01482350365401495404561296657, 4.48396005193632839091050347703, 4.49275503056605956887332218662, 5.18834549104157655629253304149, 5.26684051917615546558072143272, 5.64151934250159073352078862002, 6.06205324974830449028876963511, 6.87314913958770415880115059590, 6.97759157012361549302620265784, 7.48791100877396169877378558219, 7.75438943832620766636523381249, 8.257049266024404746902099561890, 8.320087252737047204775071169508, 8.874704509138622740975186719162

Graph of the $Z$-function along the critical line