Properties

Label 4-63e2-1.1-c8e2-0-1
Degree $4$
Conductor $3969$
Sign $1$
Analytic cond. $658.684$
Root an. cond. $5.06604$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 256·4-s − 239·7-s + 4.16e5·19-s − 3.90e5·25-s − 6.11e4·28-s + 2.39e6·31-s + 2.96e6·37-s + 1.36e7·43-s − 5.70e6·49-s + 2.44e7·61-s − 1.67e7·64-s − 3.72e7·67-s − 2.28e7·73-s + 1.06e8·76-s − 7.48e7·79-s − 1.00e8·100-s − 1.24e8·103-s + 6.81e7·109-s + 2.14e8·121-s + 6.12e8·124-s + 127-s + 131-s − 9.95e7·133-s + 137-s + 139-s + 7.59e8·148-s + 149-s + ⋯
L(s)  = 1  + 4-s − 0.0995·7-s + 3.19·19-s − 25-s − 0.0995·28-s + 2.59·31-s + 1.58·37-s + 3.99·43-s − 0.990·49-s + 1.76·61-s − 64-s − 1.85·67-s − 0.806·73-s + 3.19·76-s − 1.92·79-s − 100-s − 1.10·103-s + 0.482·109-s + 121-s + 2.59·124-s − 0.318·133-s + 1.58·148-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s+4)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3969\)    =    \(3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(658.684\)
Root analytic conductor: \(5.06604\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3969,\ (\ :4, 4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(4.471349040\)
\(L(\frac12)\) \(\approx\) \(4.471349040\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 + 239 T + p^{8} T^{2} \)
good2$C_2^2$ \( 1 - p^{8} T^{2} + p^{16} T^{4} \)
5$C_2$ \( ( 1 - p^{4} T + p^{8} T^{2} )( 1 + p^{4} T + p^{8} T^{2} ) \)
11$C_2^2$ \( 1 - p^{8} T^{2} + p^{16} T^{4} \)
13$C_2$ \( ( 1 - 20641 T + p^{8} T^{2} )( 1 + 20641 T + p^{8} T^{2} ) \)
17$C_2$ \( ( 1 - p^{4} T + p^{8} T^{2} )( 1 + p^{4} T + p^{8} T^{2} ) \)
19$C_2$ \( ( 1 - 258526 T + p^{8} T^{2} )( 1 - 157967 T + p^{8} T^{2} ) \)
23$C_2^2$ \( 1 - p^{8} T^{2} + p^{16} T^{4} \)
29$C_2$ \( ( 1 + p^{8} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 1809406 T + p^{8} T^{2} )( 1 - 583439 T + p^{8} T^{2} ) \)
37$C_2$ \( ( 1 - 3468481 T + p^{8} T^{2} )( 1 + 503522 T + p^{8} T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - p^{4} T )^{2}( 1 + p^{4} T )^{2} \)
43$C_2$ \( ( 1 - 6837073 T + p^{8} T^{2} )^{2} \)
47$C_2$ \( ( 1 - p^{4} T + p^{8} T^{2} )( 1 + p^{4} T + p^{8} T^{2} ) \)
53$C_2^2$ \( 1 - p^{8} T^{2} + p^{16} T^{4} \)
59$C_2$ \( ( 1 - p^{4} T + p^{8} T^{2} )( 1 + p^{4} T + p^{8} T^{2} ) \)
61$C_2$ \( ( 1 - 24133919 T + p^{8} T^{2} )( 1 - 307393 T + p^{8} T^{2} ) \)
67$C_2$ \( ( 1 + 5421406 T + p^{8} T^{2} )( 1 + 31874833 T + p^{8} T^{2} ) \)
71$C_2$ \( ( 1 + p^{8} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16169282 T + p^{8} T^{2} )( 1 + 39067199 T + p^{8} T^{2} ) \)
79$C_2$ \( ( 1 + 18887038 T + p^{8} T^{2} )( 1 + 56007121 T + p^{8} T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - p^{4} T )^{2}( 1 + p^{4} T )^{2} \)
89$C_2$ \( ( 1 - p^{4} T + p^{8} T^{2} )( 1 + p^{4} T + p^{8} T^{2} ) \)
97$C_2$ \( ( 1 - 176908034 T + p^{8} T^{2} )( 1 + 176908034 T + p^{8} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59572749848923047568903525513, −13.06692606316925045388354696752, −12.12926501204130282483349543234, −11.85449822988354180504757393619, −11.39546102615457504936321851721, −10.89957991634720377388219801685, −9.883444173507441036606665170353, −9.772191031526930645740631155698, −9.005945150905648976367180811473, −8.024240275163906909555281840409, −7.47653957146487927667984132246, −7.16191837158659595587005149316, −6.04911246902548639209313030173, −5.86896899055920695320111578469, −4.80667640793934608136129210346, −4.00101093707779898749128625119, −2.81810976858910653398645799182, −2.66796737970494788354670329687, −1.32242272933818938675535662222, −0.77371123765152503683173857284, 0.77371123765152503683173857284, 1.32242272933818938675535662222, 2.66796737970494788354670329687, 2.81810976858910653398645799182, 4.00101093707779898749128625119, 4.80667640793934608136129210346, 5.86896899055920695320111578469, 6.04911246902548639209313030173, 7.16191837158659595587005149316, 7.47653957146487927667984132246, 8.024240275163906909555281840409, 9.005945150905648976367180811473, 9.772191031526930645740631155698, 9.883444173507441036606665170353, 10.89957991634720377388219801685, 11.39546102615457504936321851721, 11.85449822988354180504757393619, 12.12926501204130282483349543234, 13.06692606316925045388354696752, 13.59572749848923047568903525513

Graph of the $Z$-function along the critical line