Properties

Label 4-63e2-1.1-c5e2-0-1
Degree $4$
Conductor $3969$
Sign $1$
Analytic cond. $102.094$
Root an. cond. $3.17870$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 32·4-s + 11·5-s + 259·7-s − 184·8-s − 22·10-s + 269·11-s − 616·13-s − 518·14-s + 368·16-s + 1.89e3·17-s + 164·19-s + 352·20-s − 538·22-s − 3.26e3·23-s + 3.12e3·25-s + 1.23e3·26-s + 8.28e3·28-s − 4.83e3·29-s − 2.84e3·31-s − 5.88e3·32-s − 3.79e3·34-s + 2.84e3·35-s + 1.13e4·37-s − 328·38-s − 2.02e3·40-s + 3.37e4·41-s + ⋯
L(s)  = 1  − 0.353·2-s + 4-s + 0.196·5-s + 1.99·7-s − 1.01·8-s − 0.0695·10-s + 0.670·11-s − 1.01·13-s − 0.706·14-s + 0.359·16-s + 1.59·17-s + 0.104·19-s + 0.196·20-s − 0.236·22-s − 1.28·23-s + 25-s + 0.357·26-s + 1.99·28-s − 1.06·29-s − 0.530·31-s − 1.01·32-s − 0.562·34-s + 0.393·35-s + 1.36·37-s − 0.0368·38-s − 0.200·40-s + 3.13·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3969\)    =    \(3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(102.094\)
Root analytic conductor: \(3.17870\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3969,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.218706645\)
\(L(\frac12)\) \(\approx\) \(3.218706645\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 - 37 p T + p^{5} T^{2} \)
good2$C_2^2$ \( 1 + p T - 7 p^{2} T^{2} + p^{6} T^{3} + p^{10} T^{4} \)
5$C_2^2$ \( 1 - 11 T - 3004 T^{2} - 11 p^{5} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 269 T - 88690 T^{2} - 269 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2$ \( ( 1 + 308 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 1896 T + 2174959 T^{2} - 1896 p^{5} T^{3} + p^{10} T^{4} \)
19$C_2^2$ \( 1 - 164 T - 2449203 T^{2} - 164 p^{5} T^{3} + p^{10} T^{4} \)
23$C_2^2$ \( 1 + 3264 T + 4217353 T^{2} + 3264 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2$ \( ( 1 + 2417 T + p^{5} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 2841 T - 20557870 T^{2} + 2841 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2^2$ \( 1 - 11328 T + 58979627 T^{2} - 11328 p^{5} T^{3} + p^{10} T^{4} \)
41$C_2$ \( ( 1 - 16856 T + p^{5} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 7894 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 21102 T + 215949397 T^{2} - 21102 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2^2$ \( 1 + 29691 T + 463359988 T^{2} + 29691 p^{5} T^{3} + p^{10} T^{4} \)
59$C_2^2$ \( 1 + 8163 T - 648289730 T^{2} + 8163 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 + 15166 T - 614588745 T^{2} + 15166 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 - 32078 T - 321127023 T^{2} - 32078 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 - 38274 T + p^{5} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 34866 T - 857433637 T^{2} + 34866 p^{5} T^{3} + p^{10} T^{4} \)
79$C_2^2$ \( 1 + 13529 T - 2894022558 T^{2} + 13529 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2$ \( ( 1 - 68103 T + p^{5} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 114922 T + 7623006635 T^{2} + 114922 p^{5} T^{3} + p^{10} T^{4} \)
97$C_2$ \( ( 1 - 154959 T + p^{5} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.54348893151507141293156939540, −14.18486076054878851549714353808, −12.95214906774863978430227718158, −12.22124514527243934443952069284, −12.03362765745625803400697044795, −11.33120706085455040414708176564, −11.01689256090200368971508731506, −10.37413804787813767011511561290, −9.434732126130794881203252510319, −9.198792087793825889282597150717, −8.117822211397690101190197204966, −7.69358835229540893068209075687, −7.29647728617382301645682747042, −6.22089359202062142048700507918, −5.64254554922747047630528466922, −4.86049214099348166130608297492, −3.89150614055319611921541105177, −2.60172269683925419811545073202, −1.89117142083973604670015071769, −0.940870785067477514325087956900, 0.940870785067477514325087956900, 1.89117142083973604670015071769, 2.60172269683925419811545073202, 3.89150614055319611921541105177, 4.86049214099348166130608297492, 5.64254554922747047630528466922, 6.22089359202062142048700507918, 7.29647728617382301645682747042, 7.69358835229540893068209075687, 8.117822211397690101190197204966, 9.198792087793825889282597150717, 9.434732126130794881203252510319, 10.37413804787813767011511561290, 11.01689256090200368971508731506, 11.33120706085455040414708176564, 12.03362765745625803400697044795, 12.22124514527243934443952069284, 12.95214906774863978430227718158, 14.18486076054878851549714353808, 14.54348893151507141293156939540

Graph of the $Z$-function along the critical line