Properties

Label 4-63e2-1.1-c5e2-0-0
Degree $4$
Conductor $3969$
Sign $1$
Analytic cond. $102.094$
Root an. cond. $3.17870$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·4-s − 211·7-s − 854·13-s − 3.14e3·19-s + 3.12e3·25-s − 6.75e3·28-s − 2.72e3·31-s + 6.66e3·37-s + 4.49e4·43-s + 2.77e4·49-s − 2.73e4·52-s + 3.86e4·61-s − 3.27e4·64-s + 3.79e4·67-s + 7.81e4·73-s − 1.00e5·76-s − 9.08e4·79-s + 1.80e5·91-s − 2.68e5·97-s + 1.00e5·100-s + 2.11e5·103-s + 2.47e5·109-s + 1.61e5·121-s − 8.71e4·124-s + 127-s + 131-s + 6.63e5·133-s + ⋯
L(s)  = 1  + 4-s − 1.62·7-s − 1.40·13-s − 1.99·19-s + 25-s − 1.62·28-s − 0.508·31-s + 0.799·37-s + 3.70·43-s + 1.64·49-s − 1.40·52-s + 1.32·61-s − 64-s + 1.03·67-s + 1.71·73-s − 1.99·76-s − 1.63·79-s + 2.28·91-s − 2.90·97-s + 100-s + 1.96·103-s + 1.99·109-s + 121-s − 0.508·124-s + 5.50e−6·127-s + 5.09e−6·131-s + 3.25·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3969\)    =    \(3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(102.094\)
Root analytic conductor: \(3.17870\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3969,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.477713192\)
\(L(\frac12)\) \(\approx\) \(1.477713192\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 + 211 T + p^{5} T^{2} \)
good2$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
5$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
13$C_2$ \( ( 1 + 427 T + p^{5} T^{2} )^{2} \)
17$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
19$C_2$ \( ( 1 + 1432 T + p^{5} T^{2} )( 1 + 1711 T + p^{5} T^{2} ) \)
23$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
29$C_2$ \( ( 1 + p^{5} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7601 T + p^{5} T^{2} )( 1 + 10324 T + p^{5} T^{2} ) \)
37$C_2$ \( ( 1 - 16550 T + p^{5} T^{2} )( 1 + 9889 T + p^{5} T^{2} ) \)
41$C_2$ \( ( 1 + p^{5} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 22475 T + p^{5} T^{2} )^{2} \)
47$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
53$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
59$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
61$C_2$ \( ( 1 - 56927 T + p^{5} T^{2} )( 1 + 18301 T + p^{5} T^{2} ) \)
67$C_2$ \( ( 1 - 73475 T + p^{5} T^{2} )( 1 + 35536 T + p^{5} T^{2} ) \)
71$C_2$ \( ( 1 + p^{5} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 79577 T + p^{5} T^{2} )( 1 + 1450 T + p^{5} T^{2} ) \)
79$C_2$ \( ( 1 - 9707 T + p^{5} T^{2} )( 1 + 100564 T + p^{5} T^{2} ) \)
83$C_2$ \( ( 1 + p^{5} T^{2} )^{2} \)
89$C_2^2$ \( 1 - p^{5} T^{2} + p^{10} T^{4} \)
97$C_2$ \( ( 1 + 134386 T + p^{5} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.46847659039461493345903431197, −13.64398955816009963221871083143, −12.80087592266306504327133815938, −12.49317080925063326228470202538, −12.41851196854919668044258481653, −11.10283308403451755005909291256, −11.07485335440873072008018116880, −10.21195500788840378869020378486, −9.709342263118265056967428636651, −9.109847853607771610155324182121, −8.416888688048899633377404508713, −7.20800870100179787253572584582, −7.17781922594811372373820198654, −6.29376681186068698486278281416, −5.88768946107084486704374393855, −4.66420969214935304481468916863, −3.81877294048210270237322961338, −2.58941947995594012126329059081, −2.37226808269346661556830159644, −0.53287911063823539317724046957, 0.53287911063823539317724046957, 2.37226808269346661556830159644, 2.58941947995594012126329059081, 3.81877294048210270237322961338, 4.66420969214935304481468916863, 5.88768946107084486704374393855, 6.29376681186068698486278281416, 7.17781922594811372373820198654, 7.20800870100179787253572584582, 8.416888688048899633377404508713, 9.109847853607771610155324182121, 9.709342263118265056967428636651, 10.21195500788840378869020378486, 11.07485335440873072008018116880, 11.10283308403451755005909291256, 12.41851196854919668044258481653, 12.49317080925063326228470202538, 12.80087592266306504327133815938, 13.64398955816009963221871083143, 14.46847659039461493345903431197

Graph of the $Z$-function along the critical line