Properties

Label 4-63e2-1.1-c2e2-0-4
Degree $4$
Conductor $3969$
Sign $1$
Analytic cond. $2.94680$
Root an. cond. $1.31020$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s + 13·7-s − 63·19-s − 25·25-s + 52·28-s + 105·31-s − 73·37-s + 122·43-s + 120·49-s − 168·61-s − 64·64-s + 13·67-s − 189·73-s − 252·76-s − 11·79-s − 100·100-s + 231·103-s + 71·109-s + 121·121-s + 420·124-s + 127-s + 131-s − 819·133-s + 137-s + 139-s − 292·148-s + 149-s + ⋯
L(s)  = 1  + 4-s + 13/7·7-s − 3.31·19-s − 25-s + 13/7·28-s + 3.38·31-s − 1.97·37-s + 2.83·43-s + 2.44·49-s − 2.75·61-s − 64-s + 0.194·67-s − 2.58·73-s − 3.31·76-s − 0.139·79-s − 100-s + 2.24·103-s + 0.651·109-s + 121-s + 3.38·124-s + 0.00787·127-s + 0.00763·131-s − 6.15·133-s + 0.00729·137-s + 0.00719·139-s − 1.97·148-s + 0.00671·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3969\)    =    \(3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(2.94680\)
Root analytic conductor: \(1.31020\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3969,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.837569632\)
\(L(\frac12)\) \(\approx\) \(1.837569632\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 - 13 T + p^{2} T^{2} \)
good2$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
5$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
11$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - 23 T + p^{2} T^{2} )( 1 + 23 T + p^{2} T^{2} ) \)
17$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
19$C_2$ \( ( 1 + 26 T + p^{2} T^{2} )( 1 + 37 T + p^{2} T^{2} ) \)
23$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
29$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 59 T + p^{2} T^{2} )( 1 - 46 T + p^{2} T^{2} ) \)
37$C_2$ \( ( 1 + 26 T + p^{2} T^{2} )( 1 + 47 T + p^{2} T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_2$ \( ( 1 - 61 T + p^{2} T^{2} )^{2} \)
47$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
53$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
59$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
61$C_2$ \( ( 1 + 47 T + p^{2} T^{2} )( 1 + 121 T + p^{2} T^{2} ) \)
67$C_2$ \( ( 1 - 122 T + p^{2} T^{2} )( 1 + 109 T + p^{2} T^{2} ) \)
71$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 46 T + p^{2} T^{2} )( 1 + 143 T + p^{2} T^{2} ) \)
79$C_2$ \( ( 1 - 131 T + p^{2} T^{2} )( 1 + 142 T + p^{2} T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
89$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )( 1 + 2 T + p^{2} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.07902367657215131522183328558, −14.55427705800204850411987557067, −13.88619636377177409366953890782, −13.59028325535913707785545531298, −12.48044679524425182942558960747, −12.20905977802725208567214610228, −11.53869866258435274751122380070, −11.09115026222997729412476934948, −10.48528122824025194306920378730, −10.28408700440128297918597752403, −8.802465309030291298696486030989, −8.623334246964728123469544217439, −7.85482144546790696610603288259, −7.29863918295464248640678875541, −6.32906459864325633593013236774, −5.97953310096072569385332632094, −4.49539743087768569403012706023, −4.44364711489392849381763759020, −2.53876036153271695625248551063, −1.80347681501906246688704407860, 1.80347681501906246688704407860, 2.53876036153271695625248551063, 4.44364711489392849381763759020, 4.49539743087768569403012706023, 5.97953310096072569385332632094, 6.32906459864325633593013236774, 7.29863918295464248640678875541, 7.85482144546790696610603288259, 8.623334246964728123469544217439, 8.802465309030291298696486030989, 10.28408700440128297918597752403, 10.48528122824025194306920378730, 11.09115026222997729412476934948, 11.53869866258435274751122380070, 12.20905977802725208567214610228, 12.48044679524425182942558960747, 13.59028325535913707785545531298, 13.88619636377177409366953890782, 14.55427705800204850411987557067, 15.07902367657215131522183328558

Graph of the $Z$-function along the critical line