Properties

Label 4-63e2-1.1-c13e2-0-0
Degree $4$
Conductor $3969$
Sign $1$
Analytic cond. $4563.74$
Root an. cond. $8.21921$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.19e3·4-s − 3.86e5·7-s + 6.96e7·13-s − 1.77e8·19-s + 1.22e9·25-s − 3.16e9·28-s + 5.47e9·31-s + 2.73e10·37-s − 1.54e11·43-s + 5.25e10·49-s + 5.70e11·52-s − 7.66e11·61-s − 5.49e11·64-s + 2.26e11·67-s − 1.84e12·73-s − 1.45e12·76-s − 4.08e12·79-s − 2.69e13·91-s − 2.47e13·97-s + 1.00e13·100-s − 2.40e13·103-s + 6.95e12·109-s + 3.45e13·121-s + 4.48e13·124-s + 127-s + 131-s + 6.85e13·133-s + ⋯
L(s)  = 1  + 4-s − 1.24·7-s + 3.99·13-s − 0.865·19-s + 25-s − 1.24·28-s + 1.10·31-s + 1.75·37-s − 3.72·43-s + 0.542·49-s + 3.99·52-s − 1.90·61-s − 64-s + 0.306·67-s − 1.42·73-s − 0.865·76-s − 1.89·79-s − 4.96·91-s − 3.01·97-s + 100-s − 1.98·103-s + 0.397·109-s + 121-s + 1.10·124-s + 1.07·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s+13/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3969\)    =    \(3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(4563.74\)
Root analytic conductor: \(8.21921\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3969,\ (\ :13/2, 13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(3.499568619\)
\(L(\frac12)\) \(\approx\) \(3.499568619\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 + 386569 T + p^{13} T^{2} \)
good2$C_2^2$ \( 1 - p^{13} T^{2} + p^{26} T^{4} \)
5$C_2^2$ \( 1 - p^{13} T^{2} + p^{26} T^{4} \)
11$C_2^2$ \( 1 - p^{13} T^{2} + p^{26} T^{4} \)
13$C_2$ \( ( 1 - 34804217 T + p^{13} T^{2} )^{2} \)
17$C_2^2$ \( 1 - p^{13} T^{2} + p^{26} T^{4} \)
19$C_2$ \( ( 1 - 231547688 T + p^{13} T^{2} )( 1 + 408943081 T + p^{13} T^{2} ) \)
23$C_2^2$ \( 1 - p^{13} T^{2} + p^{26} T^{4} \)
29$C_2$ \( ( 1 + p^{13} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 9862529036 T + p^{13} T^{2} )( 1 + 4383058669 T + p^{13} T^{2} ) \)
37$C_2$ \( ( 1 - 26671973339 T + p^{13} T^{2} )( 1 - 705453830 T + p^{13} T^{2} ) \)
41$C_2$ \( ( 1 + p^{13} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 77218825315 T + p^{13} T^{2} )^{2} \)
47$C_2^2$ \( 1 - p^{13} T^{2} + p^{26} T^{4} \)
53$C_2^2$ \( 1 - p^{13} T^{2} + p^{26} T^{4} \)
59$C_2^2$ \( 1 - p^{13} T^{2} + p^{26} T^{4} \)
61$C_2$ \( ( 1 + 171215488093 T + p^{13} T^{2} )( 1 + 595391378401 T + p^{13} T^{2} ) \)
67$C_2$ \( ( 1 - 1380765177776 T + p^{13} T^{2} )( 1 + 1153893260515 T + p^{13} T^{2} ) \)
71$C_2$ \( ( 1 + p^{13} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 641895299153 T + p^{13} T^{2} )( 1 + 2490400654570 T + p^{13} T^{2} ) \)
79$C_2$ \( ( 1 + 820761767284 T + p^{13} T^{2} )( 1 + 3263778980263 T + p^{13} T^{2} ) \)
83$C_2$ \( ( 1 + p^{13} T^{2} )^{2} \)
89$C_2^2$ \( 1 - p^{13} T^{2} + p^{26} T^{4} \)
97$C_2$ \( ( 1 + 12352800515314 T + p^{13} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.67956915941264042634389961766, −11.65328818993880876206301146448, −11.48789085475342258635516206842, −10.68213127899168488907632124240, −10.63934882970677437754657853253, −9.731769791368634098701896177409, −9.005234992431773146151721747778, −8.348813345455197391641813408543, −8.225956807299065564095212428811, −6.75135494445845633567326798531, −6.72552584883798513417777713216, −6.11251382945101435924016658500, −5.80978669543641176079218593341, −4.46999659229369451296737921040, −3.86781653650923235723636543955, −3.05031666023229871851106322309, −2.94656717265091497130378969266, −1.51178987584367941609140241200, −1.43669686895672051935070492477, −0.45338920763888235954615480699, 0.45338920763888235954615480699, 1.43669686895672051935070492477, 1.51178987584367941609140241200, 2.94656717265091497130378969266, 3.05031666023229871851106322309, 3.86781653650923235723636543955, 4.46999659229369451296737921040, 5.80978669543641176079218593341, 6.11251382945101435924016658500, 6.72552584883798513417777713216, 6.75135494445845633567326798531, 8.225956807299065564095212428811, 8.348813345455197391641813408543, 9.005234992431773146151721747778, 9.731769791368634098701896177409, 10.63934882970677437754657853253, 10.68213127899168488907632124240, 11.48789085475342258635516206842, 11.65328818993880876206301146448, 12.67956915941264042634389961766

Graph of the $Z$-function along the critical line