Properties

Label 4-627200-1.1-c1e2-0-15
Degree $4$
Conductor $627200$
Sign $1$
Analytic cond. $39.9908$
Root an. cond. $2.51472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 6·9-s + 8·23-s − 25-s + 9·49-s + 24·63-s + 27·81-s − 36·113-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 32·161-s + 163-s + 167-s + 22·169-s + 173-s − 4·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 1.51·7-s + 2·9-s + 1.66·23-s − 1/5·25-s + 9/7·49-s + 3.02·63-s + 3·81-s − 3.38·113-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 2.52·161-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s − 0.302·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(627200\)    =    \(2^{9} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(39.9908\)
Root analytic conductor: \(2.51472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{627200} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 627200,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.203809084\)
\(L(\frac12)\) \(\approx\) \(3.203809084\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + T^{2} \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
good3$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.278857358912135683648331592949, −7.85523997830413439323621920818, −7.52877542759836625976023433952, −7.09263714525588604100185307755, −6.71799942616236879432576474733, −6.23657571450890090090118697455, −5.31653423457709932973660497586, −5.16324332674799258053375701277, −4.63029833777402002689637638025, −4.18394461971921826277581391365, −3.77563275516201803629927761064, −2.92428294159676277079358323675, −2.16845876189108495481204389094, −1.48936813032477414266607529211, −1.07177384733561596654249277417, 1.07177384733561596654249277417, 1.48936813032477414266607529211, 2.16845876189108495481204389094, 2.92428294159676277079358323675, 3.77563275516201803629927761064, 4.18394461971921826277581391365, 4.63029833777402002689637638025, 5.16324332674799258053375701277, 5.31653423457709932973660497586, 6.23657571450890090090118697455, 6.71799942616236879432576474733, 7.09263714525588604100185307755, 7.52877542759836625976023433952, 7.85523997830413439323621920818, 8.278857358912135683648331592949

Graph of the $Z$-function along the critical line