Properties

Label 4-60e4-1.1-c1e2-0-9
Degree $4$
Conductor $12960000$
Sign $1$
Analytic cond. $826.340$
Root an. cond. $5.36154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·19-s + 14·31-s − 11·49-s − 26·61-s − 8·79-s + 38·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  − 0.458·19-s + 2.51·31-s − 1.57·49-s − 3.32·61-s − 0.900·79-s + 3.63·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1/13·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(826.340\)
Root analytic conductor: \(5.36154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12960000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.642661250\)
\(L(\frac12)\) \(\approx\) \(1.642661250\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - p T^{2} )^{2} \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 61 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 109 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 169 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.717333090204791611798453361056, −8.458977922491354144463185872546, −7.87112260524321714467039080242, −7.72155833311923291907485731016, −7.37925041713015986535745687257, −6.81531475745839131249806414152, −6.39302450206883075958968155699, −6.09750651855915398744012837930, −6.06265219306703355665865262601, −5.10729334517241851998332098234, −5.03745612959033359564318205548, −4.45670430796568630472806689582, −4.31029782917434790029497105093, −3.61871279566415536413523222071, −3.21389631703215382989902552813, −2.73224647575575663369456357834, −2.41260182677136107623503162583, −1.60010398080805915820508866624, −1.28177264963244280190096979497, −0.39229657431660952652605236117, 0.39229657431660952652605236117, 1.28177264963244280190096979497, 1.60010398080805915820508866624, 2.41260182677136107623503162583, 2.73224647575575663369456357834, 3.21389631703215382989902552813, 3.61871279566415536413523222071, 4.31029782917434790029497105093, 4.45670430796568630472806689582, 5.03745612959033359564318205548, 5.10729334517241851998332098234, 6.06265219306703355665865262601, 6.09750651855915398744012837930, 6.39302450206883075958968155699, 6.81531475745839131249806414152, 7.37925041713015986535745687257, 7.72155833311923291907485731016, 7.87112260524321714467039080242, 8.458977922491354144463185872546, 8.717333090204791611798453361056

Graph of the $Z$-function along the critical line