L(s) = 1 | − 2-s + 3-s − 4-s − 5-s − 6-s + 3·8-s + 9-s + 10-s − 12-s − 15-s − 16-s − 18-s + 4·19-s + 20-s − 8·23-s + 3·24-s + 25-s + 27-s + 30-s − 5·32-s − 36-s − 4·38-s − 3·40-s − 20·43-s − 45-s + 8·46-s − 8·47-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.447·5-s − 0.408·6-s + 1.06·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 0.258·15-s − 1/4·16-s − 0.235·18-s + 0.917·19-s + 0.223·20-s − 1.66·23-s + 0.612·24-s + 1/5·25-s + 0.192·27-s + 0.182·30-s − 0.883·32-s − 1/6·36-s − 0.648·38-s − 0.474·40-s − 3.04·43-s − 0.149·45-s + 1.17·46-s − 1.16·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 + T + p T^{2} \) |
| 3 | $C_1$ | \( 1 - T \) |
| 5 | $C_1$ | \( 1 + T \) |
good | 7 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2^2$ | \( 1 - 6 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2^2$ | \( 1 + 22 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2^2$ | \( 1 + 34 T^{2} + p^{2} T^{4} \) |
| 41 | $C_2^2$ | \( 1 - 10 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 47 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 59 | $C_2^2$ | \( 1 - 62 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 + 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \) |
| 79 | $C_2^2$ | \( 1 - 74 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 - 26 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 - 26 T^{2} + p^{2} T^{4} \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.632922749941875875950395990204, −8.333466766094312934973089475285, −8.080788798702809314631794457439, −7.55989458387424928695794292135, −7.06936106822550896638081264233, −6.60699706356148881156654783607, −5.85599653648490531070606180207, −5.25554125798915349912309340269, −4.72149318922725014939474951796, −4.17904652800768753666457412347, −3.57681269472413946262612471904, −3.10078140345905009501464856082, −2.04768082260519818694880700427, −1.35569841418464248309945519875, 0,
1.35569841418464248309945519875, 2.04768082260519818694880700427, 3.10078140345905009501464856082, 3.57681269472413946262612471904, 4.17904652800768753666457412347, 4.72149318922725014939474951796, 5.25554125798915349912309340269, 5.85599653648490531070606180207, 6.60699706356148881156654783607, 7.06936106822550896638081264233, 7.55989458387424928695794292135, 8.080788798702809314631794457439, 8.333466766094312934973089475285, 8.632922749941875875950395990204