Properties

Label 4-60e3-1.1-c1e2-0-15
Degree $4$
Conductor $216000$
Sign $-1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s − 5-s + 6-s + 3·8-s + 9-s + 10-s + 12-s + 6·13-s + 15-s − 16-s − 18-s + 20-s − 3·24-s + 25-s − 6·26-s − 27-s − 30-s − 14·31-s − 5·32-s − 36-s + 12·37-s − 6·39-s − 3·40-s − 6·41-s − 12·43-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.447·5-s + 0.408·6-s + 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 1.66·13-s + 0.258·15-s − 1/4·16-s − 0.235·18-s + 0.223·20-s − 0.612·24-s + 1/5·25-s − 1.17·26-s − 0.192·27-s − 0.182·30-s − 2.51·31-s − 0.883·32-s − 1/6·36-s + 1.97·37-s − 0.960·39-s − 0.474·40-s − 0.937·41-s − 1.82·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + p T^{2} \)
3$C_1$ \( 1 + T \)
5$C_1$ \( 1 + T \)
good7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 48 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.815189583324416464020989858747, −8.273758438220782298212555924444, −8.082761271748414451335878009358, −7.44305736504853416000804076175, −6.95029345255366923721374297473, −6.48367837757341780282163265212, −5.80998385453879195914655986007, −5.41864425062058230963612934549, −4.80101448839621137664297524476, −4.17479179697259621845652957324, −3.73401164026610140094238910717, −3.16031192123431025227868593303, −1.84136825559965944450320096236, −1.20509399293758926898379097876, 0, 1.20509399293758926898379097876, 1.84136825559965944450320096236, 3.16031192123431025227868593303, 3.73401164026610140094238910717, 4.17479179697259621845652957324, 4.80101448839621137664297524476, 5.41864425062058230963612934549, 5.80998385453879195914655986007, 6.48367837757341780282163265212, 6.95029345255366923721374297473, 7.44305736504853416000804076175, 8.082761271748414451335878009358, 8.273758438220782298212555924444, 8.815189583324416464020989858747

Graph of the $Z$-function along the critical line