Properties

Label 4-600e2-1.1-c1e2-0-40
Degree $4$
Conductor $360000$
Sign $1$
Analytic cond. $22.9539$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·7-s + 9-s − 8·13-s − 8·19-s + 8·21-s + 4·27-s − 8·37-s + 16·39-s + 12·43-s − 2·49-s + 16·57-s − 20·61-s − 4·63-s − 28·67-s − 16·73-s + 32·79-s − 11·81-s + 32·91-s − 32·97-s − 28·103-s − 12·109-s + 16·111-s − 8·117-s − 6·121-s + 127-s − 24·129-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.51·7-s + 1/3·9-s − 2.21·13-s − 1.83·19-s + 1.74·21-s + 0.769·27-s − 1.31·37-s + 2.56·39-s + 1.82·43-s − 2/7·49-s + 2.11·57-s − 2.56·61-s − 0.503·63-s − 3.42·67-s − 1.87·73-s + 3.60·79-s − 1.22·81-s + 3.35·91-s − 3.24·97-s − 2.75·103-s − 1.14·109-s + 1.51·111-s − 0.739·117-s − 0.545·121-s + 0.0887·127-s − 2.11·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(360000\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(22.9539\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 360000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
5 \( 1 \)
good7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.125314960122643492265723439737, −7.72354144124853582700669789995, −7.14831674158858802892659992469, −6.62151311275959826478778900954, −6.55536659882703175830371730918, −5.77630218563910465834928061038, −5.62831154024710482280783911304, −4.65101662855925806243412279834, −4.64606420734121812424941498850, −3.86307675984348758158108701206, −2.85591890992545130759706287184, −2.75046174819041571949427472141, −1.69174310740343087998151716036, 0, 0, 1.69174310740343087998151716036, 2.75046174819041571949427472141, 2.85591890992545130759706287184, 3.86307675984348758158108701206, 4.64606420734121812424941498850, 4.65101662855925806243412279834, 5.62831154024710482280783911304, 5.77630218563910465834928061038, 6.55536659882703175830371730918, 6.62151311275959826478778900954, 7.14831674158858802892659992469, 7.72354144124853582700669789995, 8.125314960122643492265723439737

Graph of the $Z$-function along the critical line