Properties

Label 4-600e2-1.1-c1e2-0-29
Degree $4$
Conductor $360000$
Sign $-1$
Analytic cond. $22.9539$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s − 2·13-s − 2·17-s − 4·29-s − 2·37-s + 16·41-s − 2·49-s − 18·53-s + 4·61-s − 10·73-s + 81-s + 12·89-s + 14·97-s − 28·101-s − 12·109-s + 22·113-s + 2·117-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 2·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 1/3·9-s − 0.554·13-s − 0.485·17-s − 0.742·29-s − 0.328·37-s + 2.49·41-s − 2/7·49-s − 2.47·53-s + 0.512·61-s − 1.17·73-s + 1/9·81-s + 1.27·89-s + 1.42·97-s − 2.78·101-s − 1.14·109-s + 2.06·113-s + 0.184·117-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.161·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(360000\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(22.9539\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 360000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
43$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 78 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.527064594905615730043905127765, −7.917546001311623724023070471706, −7.62406321883276971285895844362, −7.17465800430804198651677252872, −6.58928476469940038940122684820, −6.06624868484302739687086631717, −5.76584372555327408065635156897, −4.99147157063299458555442913781, −4.69900983281487705439068395975, −4.02147289823759680523140768443, −3.46952677037780167920604734403, −2.72344531631401587386018464923, −2.24367403334762488798672815125, −1.31043411414715728844581275508, 0, 1.31043411414715728844581275508, 2.24367403334762488798672815125, 2.72344531631401587386018464923, 3.46952677037780167920604734403, 4.02147289823759680523140768443, 4.69900983281487705439068395975, 4.99147157063299458555442913781, 5.76584372555327408065635156897, 6.06624868484302739687086631717, 6.58928476469940038940122684820, 7.17465800430804198651677252872, 7.62406321883276971285895844362, 7.917546001311623724023070471706, 8.527064594905615730043905127765

Graph of the $Z$-function along the critical line