Properties

Label 4-588e2-1.1-c3e2-0-1
Degree $4$
Conductor $345744$
Sign $1$
Analytic cond. $1203.61$
Root an. cond. $5.89008$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 14·5-s − 4·11-s + 108·13-s + 42·15-s + 14·17-s − 92·19-s + 152·23-s + 125·25-s + 27·27-s − 212·29-s + 144·31-s + 12·33-s − 158·37-s − 324·39-s − 780·41-s − 1.01e3·43-s + 528·47-s − 42·51-s − 606·53-s + 56·55-s + 276·57-s + 364·59-s − 678·61-s − 1.51e3·65-s − 844·67-s − 456·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.25·5-s − 0.109·11-s + 2.30·13-s + 0.722·15-s + 0.199·17-s − 1.11·19-s + 1.37·23-s + 25-s + 0.192·27-s − 1.35·29-s + 0.834·31-s + 0.0633·33-s − 0.702·37-s − 1.33·39-s − 2.97·41-s − 3.60·43-s + 1.63·47-s − 0.115·51-s − 1.57·53-s + 0.137·55-s + 0.641·57-s + 0.803·59-s − 1.42·61-s − 2.88·65-s − 1.53·67-s − 0.795·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(345744\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1203.61\)
Root analytic conductor: \(5.89008\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 345744,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.08417657229\)
\(L(\frac12)\) \(\approx\) \(0.08417657229\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T + p^{2} T^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 + 14 T + 71 T^{2} + 14 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 4 T - 1315 T^{2} + 4 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 - 54 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 14 T - 4717 T^{2} - 14 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 92 T + 1605 T^{2} + 92 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 152 T + 10937 T^{2} - 152 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 106 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 144 T - 9055 T^{2} - 144 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 + 158 T - 25689 T^{2} + 158 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 390 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 508 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 528 T + 174961 T^{2} - 528 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 606 T + 218359 T^{2} + 606 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 - 364 T - 72883 T^{2} - 364 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 678 T + 232703 T^{2} + 678 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 844 T + 411573 T^{2} + 844 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 422 T - 210933 T^{2} - 422 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 384 T - 345583 T^{2} + 384 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 + 548 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 1194 T + 720667 T^{2} + 1194 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 + 1502 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71007958256415144953456624160, −10.22113591129320116489378126048, −9.747689147172184987445118173993, −8.946876767163782537914800335277, −8.629662634215789331548687531877, −8.327907883784595903889668106389, −8.109095036545003572351853855640, −7.24204085428413570417077202273, −6.87520399321193183965056400294, −6.52315648564995398553627961534, −6.04700679747593840765199914588, −5.32396337660189184897287211027, −5.05862910910488125454326118382, −4.28975681911657657082182059729, −3.89745433927964674163016213857, −3.27192605291385878575052164001, −3.02702136813274256252712982239, −1.56156187896232319924575176752, −1.38160132855859268099628637257, −0.093945551802059977620418330843, 0.093945551802059977620418330843, 1.38160132855859268099628637257, 1.56156187896232319924575176752, 3.02702136813274256252712982239, 3.27192605291385878575052164001, 3.89745433927964674163016213857, 4.28975681911657657082182059729, 5.05862910910488125454326118382, 5.32396337660189184897287211027, 6.04700679747593840765199914588, 6.52315648564995398553627961534, 6.87520399321193183965056400294, 7.24204085428413570417077202273, 8.109095036545003572351853855640, 8.327907883784595903889668106389, 8.629662634215789331548687531877, 8.946876767163782537914800335277, 9.747689147172184987445118173993, 10.22113591129320116489378126048, 10.71007958256415144953456624160

Graph of the $Z$-function along the critical line