L(s) = 1 | + 3-s − 4·4-s − 2·9-s + 11-s − 4·12-s + 12·16-s + 12·17-s − 25-s − 5·27-s + 12·29-s + 10·31-s + 33-s + 8·36-s + 22·37-s − 12·41-s − 4·44-s + 12·48-s + 49-s + 12·51-s − 32·64-s + 10·67-s − 48·68-s − 75-s + 81-s − 24·83-s + 12·87-s + 10·93-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 2·4-s − 2/3·9-s + 0.301·11-s − 1.15·12-s + 3·16-s + 2.91·17-s − 1/5·25-s − 0.962·27-s + 2.22·29-s + 1.79·31-s + 0.174·33-s + 4/3·36-s + 3.61·37-s − 1.87·41-s − 0.603·44-s + 1.73·48-s + 1/7·49-s + 1.68·51-s − 4·64-s + 1.22·67-s − 5.82·68-s − 0.115·75-s + 1/9·81-s − 2.63·83-s + 1.28·87-s + 1.03·93-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 586971 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 586971 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.679171307\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.679171307\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | $C_2$ | \( 1 - T + p T^{2} \) |
| 7 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 11 | $C_1$ | \( 1 - T \) |
good | 2 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 5 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 5 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 11 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 - 5 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.508833833811404945218630536704, −8.085327774959512351361821751845, −7.901671452709333870689471023015, −7.32024742481712425147757589138, −6.46084267575588440942544784885, −5.81865396854508245636334597208, −5.80492978659389909733109582978, −4.95929836259470425310107953583, −4.73710013360513636713787424546, −4.10975481209818427421549838760, −3.61592205748787980286928494613, −3.01251424255196705097668786615, −2.75685822824512438972431635156, −1.19698223664384976616389110079, −0.821355075233086309329735836862,
0.821355075233086309329735836862, 1.19698223664384976616389110079, 2.75685822824512438972431635156, 3.01251424255196705097668786615, 3.61592205748787980286928494613, 4.10975481209818427421549838760, 4.73710013360513636713787424546, 4.95929836259470425310107953583, 5.80492978659389909733109582978, 5.81865396854508245636334597208, 6.46084267575588440942544784885, 7.32024742481712425147757589138, 7.901671452709333870689471023015, 8.085327774959512351361821751845, 8.508833833811404945218630536704