Properties

Label 4-5863-1.1-c1e2-0-0
Degree $4$
Conductor $5863$
Sign $1$
Analytic cond. $0.373829$
Root an. cond. $0.781931$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s + 4-s + 5-s − 3·6-s − 2·7-s − 3·8-s + 3·9-s − 10-s − 11-s + 3·12-s − 13-s + 2·14-s + 3·15-s + 16-s − 2·17-s − 3·18-s + 2·19-s + 20-s − 6·21-s + 22-s − 23-s − 9·24-s + 5·25-s + 26-s − 2·28-s − 4·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.73·3-s + 1/2·4-s + 0.447·5-s − 1.22·6-s − 0.755·7-s − 1.06·8-s + 9-s − 0.316·10-s − 0.301·11-s + 0.866·12-s − 0.277·13-s + 0.534·14-s + 0.774·15-s + 1/4·16-s − 0.485·17-s − 0.707·18-s + 0.458·19-s + 0.223·20-s − 1.30·21-s + 0.213·22-s − 0.208·23-s − 1.83·24-s + 25-s + 0.196·26-s − 0.377·28-s − 0.742·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5863 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5863 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5863\)    =    \(11 \cdot 13 \cdot 41\)
Sign: $1$
Analytic conductor: \(0.373829\)
Root analytic conductor: \(0.781931\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5863,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9611301282\)
\(L(\frac12)\) \(\approx\) \(0.9611301282\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad11$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
41$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
good2$D_{4}$ \( 1 + T + p T^{3} + p^{2} T^{4} \)
3$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T^{2} ) \)
5$C_2^2$ \( 1 - T - 4 T^{2} - p T^{3} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$D_{4}$ \( 1 + 2 T - 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 2 T + 22 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$D_{4}$ \( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - T - 26 T^{2} - p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 7 T + 16 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + T + 18 T^{2} + p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 12 T + 126 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 7 T + 86 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 3 T + 26 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 2 T - 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 4 T + 110 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
89$D_{4}$ \( 1 + 5 T + 60 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 3 T - 72 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.3297643335, −16.7838127833, −16.1826064187, −15.7879736874, −15.1337109528, −14.7607498894, −14.4017544081, −13.6470051121, −13.3171232072, −12.7909361971, −12.1124898953, −11.4139043860, −10.8085555333, −9.89034711083, −9.60543855845, −9.18736661168, −8.47511352577, −8.27580024390, −7.34937010141, −6.70692209701, −6.04808015393, −5.00744937277, −3.65228580439, −2.89109700058, −2.31460730519, 2.31460730519, 2.89109700058, 3.65228580439, 5.00744937277, 6.04808015393, 6.70692209701, 7.34937010141, 8.27580024390, 8.47511352577, 9.18736661168, 9.60543855845, 9.89034711083, 10.8085555333, 11.4139043860, 12.1124898953, 12.7909361971, 13.3171232072, 13.6470051121, 14.4017544081, 14.7607498894, 15.1337109528, 15.7879736874, 16.1826064187, 16.7838127833, 17.3297643335

Graph of the $Z$-function along the critical line