| L(s) = 1 | + 2·3-s − 5-s + 4·7-s + 3·9-s + 8·13-s − 2·15-s − 7·17-s + 19-s + 8·21-s − 4·23-s + 2·25-s + 4·27-s + 15·31-s − 4·35-s − 12·37-s + 16·39-s − 10·41-s + 10·43-s − 3·45-s − 5·47-s + 3·49-s − 14·51-s − 7·53-s + 2·57-s − 11·59-s + 3·61-s + 12·63-s + ⋯ |
| L(s) = 1 | + 1.15·3-s − 0.447·5-s + 1.51·7-s + 9-s + 2.21·13-s − 0.516·15-s − 1.69·17-s + 0.229·19-s + 1.74·21-s − 0.834·23-s + 2/5·25-s + 0.769·27-s + 2.69·31-s − 0.676·35-s − 1.97·37-s + 2.56·39-s − 1.56·41-s + 1.52·43-s − 0.447·45-s − 0.729·47-s + 3/7·49-s − 1.96·51-s − 0.961·53-s + 0.264·57-s − 1.43·59-s + 0.384·61-s + 1.51·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 33732864 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33732864 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(6.423260207\) |
| \(L(\frac12)\) |
\(\approx\) |
\(6.423260207\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.238701236636564451331677014662, −8.181182132872386575625230609059, −7.58852183466220987938246228417, −7.57127969934385176511766945908, −6.73495604490247376647518882382, −6.59299333708480298433216367895, −6.23604382288603337616885189336, −6.03253519832929230463042143898, −5.00716835657789161052398499596, −4.98826537686733075996705597320, −4.73923028091202161496117583029, −4.15985414936250733075534691836, −3.74569795789100316138439385073, −3.60818146771917266348490086330, −3.06569853628792248565410626049, −2.56111781369464597263741278414, −1.87320494791862447124187170199, −1.85844511111894555186141197849, −1.20503737985211782268765787417, −0.62974504540038199137308396807,
0.62974504540038199137308396807, 1.20503737985211782268765787417, 1.85844511111894555186141197849, 1.87320494791862447124187170199, 2.56111781369464597263741278414, 3.06569853628792248565410626049, 3.60818146771917266348490086330, 3.74569795789100316138439385073, 4.15985414936250733075534691836, 4.73923028091202161496117583029, 4.98826537686733075996705597320, 5.00716835657789161052398499596, 6.03253519832929230463042143898, 6.23604382288603337616885189336, 6.59299333708480298433216367895, 6.73495604490247376647518882382, 7.57127969934385176511766945908, 7.58852183466220987938246228417, 8.181182132872386575625230609059, 8.238701236636564451331677014662