Properties

Label 4-57e3-1.1-c1e2-0-8
Degree $4$
Conductor $185193$
Sign $-1$
Analytic cond. $11.8080$
Root an. cond. $1.85372$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 3-s + 8·4-s + 4·6-s − 10·7-s + 8·8-s + 9-s + 8·12-s − 40·14-s − 4·16-s + 4·18-s − 19-s − 10·21-s + 8·24-s − 25-s + 27-s − 80·28-s + 4·29-s − 32·32-s + 8·36-s − 4·38-s − 40·42-s − 2·43-s − 4·48-s + 61·49-s − 4·50-s − 20·53-s + ⋯
L(s)  = 1  + 2.82·2-s + 0.577·3-s + 4·4-s + 1.63·6-s − 3.77·7-s + 2.82·8-s + 1/3·9-s + 2.30·12-s − 10.6·14-s − 16-s + 0.942·18-s − 0.229·19-s − 2.18·21-s + 1.63·24-s − 1/5·25-s + 0.192·27-s − 15.1·28-s + 0.742·29-s − 5.65·32-s + 4/3·36-s − 0.648·38-s − 6.17·42-s − 0.304·43-s − 0.577·48-s + 61/7·49-s − 0.565·50-s − 2.74·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 185193 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185193 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(185193\)    =    \(3^{3} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(11.8080\)
Root analytic conductor: \(1.85372\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 185193,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
19$C_1$ \( 1 + T \)
good2$C_2$ \( ( 1 - p T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.028755790922139382896168795846, −8.598738845501152801902892747277, −7.58489736631665346168199395971, −6.85073886350288365363080648917, −6.70211043109012358161209293170, −6.16139530761373947123603078754, −6.12241751609850681792173625996, −5.34668146252658900228619106104, −4.78903745519092577014884991606, −3.96503328962323463176155683264, −3.67840796781373175574076394185, −3.37953587462828366448462440771, −2.64121548040677802901277139388, −2.61687998381550726785939862479, 0, 2.61687998381550726785939862479, 2.64121548040677802901277139388, 3.37953587462828366448462440771, 3.67840796781373175574076394185, 3.96503328962323463176155683264, 4.78903745519092577014884991606, 5.34668146252658900228619106104, 6.12241751609850681792173625996, 6.16139530761373947123603078754, 6.70211043109012358161209293170, 6.85073886350288365363080648917, 7.58489736631665346168199395971, 8.598738845501152801902892747277, 9.028755790922139382896168795846

Graph of the $Z$-function along the critical line