Properties

Label 4-57e3-1.1-c1e2-0-2
Degree $4$
Conductor $185193$
Sign $-1$
Analytic cond. $11.8080$
Root an. cond. $1.85372$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·6-s − 2·7-s + 4·8-s + 9-s + 4·14-s − 4·16-s − 2·18-s + 19-s + 2·21-s − 4·24-s + 9·25-s − 27-s − 10·29-s − 2·38-s − 4·41-s − 4·42-s + 2·43-s + 4·48-s − 7·49-s − 18·50-s − 6·53-s + 2·54-s − 8·56-s − 57-s + 20·58-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 0.816·6-s − 0.755·7-s + 1.41·8-s + 1/3·9-s + 1.06·14-s − 16-s − 0.471·18-s + 0.229·19-s + 0.436·21-s − 0.816·24-s + 9/5·25-s − 0.192·27-s − 1.85·29-s − 0.324·38-s − 0.624·41-s − 0.617·42-s + 0.304·43-s + 0.577·48-s − 49-s − 2.54·50-s − 0.824·53-s + 0.272·54-s − 1.06·56-s − 0.132·57-s + 2.62·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 185193 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 185193 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(185193\)    =    \(3^{3} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(11.8080\)
Root analytic conductor: \(1.85372\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 185193,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
19$C_1$ \( 1 - T \)
good2$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2^2$ \( 1 - 9 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2^2$ \( 1 + 3 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 81 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
73$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 - T + p T^{2} ) \)
79$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.154400121981158804401857607700, −8.356796462076166613653114239196, −8.229137186802152492039747690389, −7.57275523727068494228009509627, −7.02168923314163501160140944529, −6.67888033745802292347432374954, −6.06431608345039650918020965328, −5.38584719084054094519193687543, −4.95110308127903308488554601984, −4.36684095993557906721725458582, −3.62211297309065956970107283013, −3.03768766443635528027342196559, −1.90709651860297644790752209471, −0.973292221297076427696333200312, 0, 0.973292221297076427696333200312, 1.90709651860297644790752209471, 3.03768766443635528027342196559, 3.62211297309065956970107283013, 4.36684095993557906721725458582, 4.95110308127903308488554601984, 5.38584719084054094519193687543, 6.06431608345039650918020965328, 6.67888033745802292347432374954, 7.02168923314163501160140944529, 7.57275523727068494228009509627, 8.229137186802152492039747690389, 8.356796462076166613653114239196, 9.154400121981158804401857607700

Graph of the $Z$-function along the critical line