Properties

Label 4-574803-1.1-c1e2-0-0
Degree $4$
Conductor $574803$
Sign $-1$
Analytic cond. $36.6499$
Root an. cond. $2.46047$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4-s + 9-s + 12-s + 8·13-s − 3·16-s − 10·25-s − 27-s + 2·31-s − 36-s − 8·39-s + 4·43-s + 3·48-s − 10·49-s − 8·52-s + 5·61-s + 7·64-s − 14·67-s + 12·73-s + 10·75-s − 24·79-s + 81-s − 2·93-s + 10·100-s + 6·103-s + 108-s − 8·109-s + ⋯
L(s)  = 1  − 0.577·3-s − 1/2·4-s + 1/3·9-s + 0.288·12-s + 2.21·13-s − 3/4·16-s − 2·25-s − 0.192·27-s + 0.359·31-s − 1/6·36-s − 1.28·39-s + 0.609·43-s + 0.433·48-s − 1.42·49-s − 1.10·52-s + 0.640·61-s + 7/8·64-s − 1.71·67-s + 1.40·73-s + 1.15·75-s − 2.70·79-s + 1/9·81-s − 0.207·93-s + 100-s + 0.591·103-s + 0.0962·108-s − 0.766·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 574803 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 574803 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(574803\)    =    \(3^{3} \cdot 61 \cdot 349\)
Sign: $-1$
Analytic conductor: \(36.6499\)
Root analytic conductor: \(2.46047\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 574803,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
61$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 6 T + p T^{2} ) \)
349$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 30 T + p T^{2} ) \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
47$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$$\times$$C_2$ \( ( 1 + 10 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.281217586751022569677766440865, −7.73959378953191402198924106991, −7.41374644686749385323244056043, −6.62918127711846836746394172878, −6.34065692077851685742247786286, −5.94552161770747711159968367770, −5.53250184867588968167216982818, −4.92336044520202239140924116987, −4.33629138464565658429913630646, −3.91665898547505411407587946160, −3.55170975021472970196854244915, −2.69916628897736680521078117496, −1.81261135717038625316232999552, −1.17979705882738141498221009990, 0, 1.17979705882738141498221009990, 1.81261135717038625316232999552, 2.69916628897736680521078117496, 3.55170975021472970196854244915, 3.91665898547505411407587946160, 4.33629138464565658429913630646, 4.92336044520202239140924116987, 5.53250184867588968167216982818, 5.94552161770747711159968367770, 6.34065692077851685742247786286, 6.62918127711846836746394172878, 7.41374644686749385323244056043, 7.73959378953191402198924106991, 8.281217586751022569677766440865

Graph of the $Z$-function along the critical line