Properties

Label 4-570e2-1.1-c5e2-0-1
Degree $4$
Conductor $324900$
Sign $1$
Analytic cond. $8357.39$
Root an. cond. $9.56131$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 18·3-s + 48·4-s + 50·5-s + 144·6-s − 222·7-s + 256·8-s + 243·9-s + 400·10-s − 466·11-s + 864·12-s − 646·13-s − 1.77e3·14-s + 900·15-s + 1.28e3·16-s − 1.52e3·17-s + 1.94e3·18-s + 722·19-s + 2.40e3·20-s − 3.99e3·21-s − 3.72e3·22-s + 524·23-s + 4.60e3·24-s + 1.87e3·25-s − 5.16e3·26-s + 2.91e3·27-s − 1.06e4·28-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 3/2·4-s + 0.894·5-s + 1.63·6-s − 1.71·7-s + 1.41·8-s + 9-s + 1.26·10-s − 1.16·11-s + 1.73·12-s − 1.06·13-s − 2.42·14-s + 1.03·15-s + 5/4·16-s − 1.28·17-s + 1.41·18-s + 0.458·19-s + 1.34·20-s − 1.97·21-s − 1.64·22-s + 0.206·23-s + 1.63·24-s + 3/5·25-s − 1.49·26-s + 0.769·27-s − 2.56·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324900 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(324900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(8357.39\)
Root analytic conductor: \(9.56131\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 324900,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p^{2} T )^{2} \)
3$C_1$ \( ( 1 - p^{2} T )^{2} \)
5$C_1$ \( ( 1 - p^{2} T )^{2} \)
19$C_1$ \( ( 1 - p^{2} T )^{2} \)
good7$D_{4}$ \( 1 + 222 T + 42460 T^{2} + 222 p^{5} T^{3} + p^{10} T^{4} \)
11$D_{4}$ \( 1 + 466 T + 242812 T^{2} + 466 p^{5} T^{3} + p^{10} T^{4} \)
13$D_{4}$ \( 1 + 646 T + 54872 p T^{2} + 646 p^{5} T^{3} + p^{10} T^{4} \)
17$D_{4}$ \( 1 + 1528 T + 3387826 T^{2} + 1528 p^{5} T^{3} + p^{10} T^{4} \)
23$D_{4}$ \( 1 - 524 T + 6927634 T^{2} - 524 p^{5} T^{3} + p^{10} T^{4} \)
29$D_{4}$ \( 1 + 3930 T + 20012392 T^{2} + 3930 p^{5} T^{3} + p^{10} T^{4} \)
31$D_{4}$ \( 1 + 14932 T + 108693794 T^{2} + 14932 p^{5} T^{3} + p^{10} T^{4} \)
37$D_{4}$ \( 1 + 11934 T + 106765552 T^{2} + 11934 p^{5} T^{3} + p^{10} T^{4} \)
41$D_{4}$ \( 1 + 5314 T + 154421152 T^{2} + 5314 p^{5} T^{3} + p^{10} T^{4} \)
43$D_{4}$ \( 1 + 6358 T + 221923748 T^{2} + 6358 p^{5} T^{3} + p^{10} T^{4} \)
47$D_{4}$ \( 1 + 8716 T + 477112834 T^{2} + 8716 p^{5} T^{3} + p^{10} T^{4} \)
53$D_{4}$ \( 1 + 19784 T + 680163994 T^{2} + 19784 p^{5} T^{3} + p^{10} T^{4} \)
59$D_{4}$ \( 1 - 14612 T - 467293490 T^{2} - 14612 p^{5} T^{3} + p^{10} T^{4} \)
61$D_{4}$ \( 1 - 7204 T + 983387442 T^{2} - 7204 p^{5} T^{3} + p^{10} T^{4} \)
67$D_{4}$ \( 1 + 9688 T + 2720503094 T^{2} + 9688 p^{5} T^{3} + p^{10} T^{4} \)
71$D_{4}$ \( 1 + 102356 T + 6160698982 T^{2} + 102356 p^{5} T^{3} + p^{10} T^{4} \)
73$D_{4}$ \( 1 + 996 T + 570590614 T^{2} + 996 p^{5} T^{3} + p^{10} T^{4} \)
79$D_{4}$ \( 1 - 40560 T + 5940669598 T^{2} - 40560 p^{5} T^{3} + p^{10} T^{4} \)
83$D_{4}$ \( 1 + 111584 T + 9106388314 T^{2} + 111584 p^{5} T^{3} + p^{10} T^{4} \)
89$D_{4}$ \( 1 - 4922 T + 5812039000 T^{2} - 4922 p^{5} T^{3} + p^{10} T^{4} \)
97$D_{4}$ \( 1 - 48010 T + 10333460064 T^{2} - 48010 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.612235838127843982417445933456, −9.542153772584373043057094966365, −8.858037321957136623811533360043, −8.577431826470078644481238929896, −7.65424469590102643321775695615, −7.37785644560675028506126506285, −6.84271733515001064342263675575, −6.75373518081851922365549390511, −5.81965243137129611871473927180, −5.70834689396731254451277737912, −4.86972979762475077971961375159, −4.79725849120551790494157571681, −3.66681440667551533284133803229, −3.58583782130507667315341738314, −2.84297940525061842822674333770, −2.69538100509700841957075564830, −1.83114335724250469654503182625, −1.75406127235074197456154865999, 0, 0, 1.75406127235074197456154865999, 1.83114335724250469654503182625, 2.69538100509700841957075564830, 2.84297940525061842822674333770, 3.58583782130507667315341738314, 3.66681440667551533284133803229, 4.79725849120551790494157571681, 4.86972979762475077971961375159, 5.70834689396731254451277737912, 5.81965243137129611871473927180, 6.75373518081851922365549390511, 6.84271733515001064342263675575, 7.37785644560675028506126506285, 7.65424469590102643321775695615, 8.577431826470078644481238929896, 8.858037321957136623811533360043, 9.542153772584373043057094966365, 9.612235838127843982417445933456

Graph of the $Z$-function along the critical line