Properties

Label 4-570e2-1.1-c1e2-0-6
Degree $4$
Conductor $324900$
Sign $1$
Analytic cond. $20.7159$
Root an. cond. $2.13341$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4-s + 4·7-s − 2·9-s − 12-s + 16-s + 2·19-s − 4·21-s + 25-s + 5·27-s + 4·28-s − 2·36-s − 6·41-s + 10·43-s − 48-s + 7·49-s − 12·53-s − 2·57-s + 6·59-s + 10·61-s − 8·63-s + 64-s + 6·71-s − 2·73-s − 75-s + 2·76-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/2·4-s + 1.51·7-s − 2/3·9-s − 0.288·12-s + 1/4·16-s + 0.458·19-s − 0.872·21-s + 1/5·25-s + 0.962·27-s + 0.755·28-s − 1/3·36-s − 0.937·41-s + 1.52·43-s − 0.144·48-s + 49-s − 1.64·53-s − 0.264·57-s + 0.781·59-s + 1.28·61-s − 1.00·63-s + 1/8·64-s + 0.712·71-s − 0.234·73-s − 0.115·75-s + 0.229·76-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(324900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(20.7159\)
Root analytic conductor: \(2.13341\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 324900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.913580043\)
\(L(\frac12)\) \(\approx\) \(1.913580043\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_2$ \( 1 + T + p T^{2} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
19$C_2$ \( 1 - 2 T + p T^{2} \)
good7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 23 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 73 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.565929136878549365807251193340, −8.376100285709741390012149447232, −7.79857314240323647012025181375, −7.48684855355639228898209155521, −6.85950664583279958465505957183, −6.44250787353207025252245590662, −5.80201472204536922908320729557, −5.47986445078808467825167546354, −4.91688825351409857270451782239, −4.59787972103688108306579185017, −3.78844256551048566972058875799, −3.12563597140545438110769135332, −2.40069242771985848465965978158, −1.75223148945196589214164913087, −0.856792700842364074085854575706, 0.856792700842364074085854575706, 1.75223148945196589214164913087, 2.40069242771985848465965978158, 3.12563597140545438110769135332, 3.78844256551048566972058875799, 4.59787972103688108306579185017, 4.91688825351409857270451782239, 5.47986445078808467825167546354, 5.80201472204536922908320729557, 6.44250787353207025252245590662, 6.85950664583279958465505957183, 7.48684855355639228898209155521, 7.79857314240323647012025181375, 8.376100285709741390012149447232, 8.565929136878549365807251193340

Graph of the $Z$-function along the critical line