Properties

Label 4-567e2-1.1-c1e2-0-23
Degree $4$
Conductor $321489$
Sign $1$
Analytic cond. $20.4984$
Root an. cond. $2.12779$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·4-s − 5-s + 7-s + 5·8-s − 10-s + 2·11-s + 5·13-s + 14-s + 5·16-s + 6·17-s − 4·19-s − 2·20-s + 2·22-s − 6·23-s + 5·25-s + 5·26-s + 2·28-s + 5·29-s + 6·31-s + 10·32-s + 6·34-s − 35-s − 6·37-s − 4·38-s − 5·40-s + 10·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 4-s − 0.447·5-s + 0.377·7-s + 1.76·8-s − 0.316·10-s + 0.603·11-s + 1.38·13-s + 0.267·14-s + 5/4·16-s + 1.45·17-s − 0.917·19-s − 0.447·20-s + 0.426·22-s − 1.25·23-s + 25-s + 0.980·26-s + 0.377·28-s + 0.928·29-s + 1.07·31-s + 1.76·32-s + 1.02·34-s − 0.169·35-s − 0.986·37-s − 0.648·38-s − 0.790·40-s + 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 321489 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 321489 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(321489\)    =    \(3^{8} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(20.4984\)
Root analytic conductor: \(2.12779\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 321489,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.150785890\)
\(L(\frac12)\) \(\approx\) \(4.150785890\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 - T + T^{2} \)
good2$C_2^2$ \( 1 - T - T^{2} - p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + T - 4 T^{2} + p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 5 T - 4 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 6 T + 5 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 10 T + 59 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 4 T - 27 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 6 T - 11 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 6 T - 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 7 T - 12 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 2 T - 63 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 14 T + 117 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 18 T + 241 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 18 T + 227 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82768414564893079969128086914, −10.75485500072417480909024911787, −10.15600469758599658379462209532, −10.03996502365996857752414646311, −9.044318894565695844381424064002, −8.674836319106929716571124931836, −8.199022846786281880979328162591, −7.82915392469211992439557756581, −7.29995247329131200860920694018, −7.01249251634111514600746523294, −6.14323805117760070964408016096, −6.10074926404431677972302125838, −5.56458345590890897927138428658, −4.54492900747510792087865449172, −4.39511277959102820086688601117, −4.02996872807467022844668338167, −3.10164539934725013716210561112, −2.77519122003841945282314792036, −1.49626899386113813250961403039, −1.35838487573151142096633233779, 1.35838487573151142096633233779, 1.49626899386113813250961403039, 2.77519122003841945282314792036, 3.10164539934725013716210561112, 4.02996872807467022844668338167, 4.39511277959102820086688601117, 4.54492900747510792087865449172, 5.56458345590890897927138428658, 6.10074926404431677972302125838, 6.14323805117760070964408016096, 7.01249251634111514600746523294, 7.29995247329131200860920694018, 7.82915392469211992439557756581, 8.199022846786281880979328162591, 8.674836319106929716571124931836, 9.044318894565695844381424064002, 10.03996502365996857752414646311, 10.15600469758599658379462209532, 10.75485500072417480909024911787, 10.82768414564893079969128086914

Graph of the $Z$-function along the critical line