L(s) = 1 | − 2·7-s − 2·9-s − 12·23-s + 25-s + 12·29-s + 4·37-s + 20·43-s − 3·49-s − 12·53-s + 4·63-s − 4·67-s + 24·71-s − 16·79-s − 5·81-s + 12·107-s + 4·109-s − 12·113-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 24·161-s + 163-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 2/3·9-s − 2.50·23-s + 1/5·25-s + 2.22·29-s + 0.657·37-s + 3.04·43-s − 3/7·49-s − 1.64·53-s + 0.503·63-s − 0.488·67-s + 2.84·71-s − 1.80·79-s − 5/9·81-s + 1.16·107-s + 0.383·109-s − 1.12·113-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 1.89·161-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 313600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.213850982\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.213850982\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 5 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 7 | $C_2$ | \( 1 + 2 T + p T^{2} \) |
good | 3 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.740293324354028093320034492248, −8.371569178851438535097195720359, −7.72417967231205206440371091917, −7.71273110823499542846308181544, −6.75938606427748610323373549762, −6.27087624192875571051851265258, −6.16943207782230729958538690385, −5.54097686482462236146375699951, −4.92936609872116028004359556395, −4.12250433368686324236236368171, −4.02348966113043943975885714437, −2.91432418996240576588953142404, −2.76929890617261215013507568311, −1.84751760735400887993660553283, −0.62674328168244276773408798542,
0.62674328168244276773408798542, 1.84751760735400887993660553283, 2.76929890617261215013507568311, 2.91432418996240576588953142404, 4.02348966113043943975885714437, 4.12250433368686324236236368171, 4.92936609872116028004359556395, 5.54097686482462236146375699951, 6.16943207782230729958538690385, 6.27087624192875571051851265258, 6.75938606427748610323373549762, 7.71273110823499542846308181544, 7.72417967231205206440371091917, 8.371569178851438535097195720359, 8.740293324354028093320034492248