L(s) = 1 | + 10·7-s − 4·16-s + 19-s + 25-s − 2·43-s + 61·49-s + 2·61-s − 22·73-s − 40·112-s + 21·121-s + 127-s + 131-s + 10·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 10·175-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 3.77·7-s − 16-s + 0.229·19-s + 1/5·25-s − 0.304·43-s + 61/7·49-s + 0.256·61-s − 2.57·73-s − 3.77·112-s + 1.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.867·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.755·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 555579 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 555579 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.259932801\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.259932801\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | | \( 1 \) |
| 19 | $C_1$ | \( 1 - T \) |
good | 2 | $C_2$ | \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \) |
| 5 | $C_2^2$ | \( 1 - T^{2} + p^{2} T^{4} \) |
| 7 | $C_2$ | \( ( 1 - 5 T + p T^{2} )^{2} \) |
| 11 | $C_2^2$ | \( 1 - 21 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2^2$ | \( 1 - 33 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2^2$ | \( 1 - 30 T^{2} + p^{2} T^{4} \) |
| 29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
| 47 | $C_2^2$ | \( 1 - 13 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 + 11 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 83 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.457707288259077960197054760580, −8.073957841478482575776375446457, −7.63963131698664278720921224669, −7.17716072499260981468870948681, −6.93848179848514410598268972312, −5.87826513264342669434687011041, −5.65732719817381090492939531705, −4.98770944705006228649621282628, −4.66107001383131332856158508778, −4.47368714118890317110419998334, −3.83177545151462000540357703330, −2.81842226367277386936517101633, −2.07794009677933110260559141292, −1.73227044111605436033558510736, −1.04281368568489569781280600938,
1.04281368568489569781280600938, 1.73227044111605436033558510736, 2.07794009677933110260559141292, 2.81842226367277386936517101633, 3.83177545151462000540357703330, 4.47368714118890317110419998334, 4.66107001383131332856158508778, 4.98770944705006228649621282628, 5.65732719817381090492939531705, 5.87826513264342669434687011041, 6.93848179848514410598268972312, 7.17716072499260981468870948681, 7.63963131698664278720921224669, 8.073957841478482575776375446457, 8.457707288259077960197054760580