| L(s) = 1 | + 2·2-s + 2·3-s + 3·4-s + 4·6-s + 7-s + 4·8-s + 3·9-s + 3·11-s + 6·12-s + 3·13-s + 2·14-s + 5·16-s − 3·17-s + 6·18-s + 3·19-s + 2·21-s + 6·22-s − 23-s + 8·24-s + 6·26-s + 4·27-s + 3·28-s + 12·29-s − 6·31-s + 6·32-s + 6·33-s − 6·34-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s + 1.63·6-s + 0.377·7-s + 1.41·8-s + 9-s + 0.904·11-s + 1.73·12-s + 0.832·13-s + 0.534·14-s + 5/4·16-s − 0.727·17-s + 1.41·18-s + 0.688·19-s + 0.436·21-s + 1.27·22-s − 0.208·23-s + 1.63·24-s + 1.17·26-s + 0.769·27-s + 0.566·28-s + 2.22·29-s − 1.07·31-s + 1.06·32-s + 1.04·33-s − 1.02·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 30802500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30802500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(20.15284449\) |
| \(L(\frac12)\) |
\(\approx\) |
\(20.15284449\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.216228123068362852020176476179, −7.957008804705988798366098842548, −7.64034471664453590170721498315, −7.14656901198569158147587521772, −6.71695877595844119838696897010, −6.67669776249369775278378642322, −6.14977434994634330761303279691, −5.87986817225805524394872683796, −5.22587016218050467252742844985, −5.08762621687267268319509311600, −4.49366390112364831504086104998, −4.25550725738654111998808176906, −3.82657155368126037494721237770, −3.61076825004540196256521852926, −3.13480480712904013430456127504, −2.70765705727071706369769103456, −2.17009591021394470659429481266, −2.02260044003993856344573316923, −1.07823350945689797624183089441, −1.01904958213642045451321757020,
1.01904958213642045451321757020, 1.07823350945689797624183089441, 2.02260044003993856344573316923, 2.17009591021394470659429481266, 2.70765705727071706369769103456, 3.13480480712904013430456127504, 3.61076825004540196256521852926, 3.82657155368126037494721237770, 4.25550725738654111998808176906, 4.49366390112364831504086104998, 5.08762621687267268319509311600, 5.22587016218050467252742844985, 5.87986817225805524394872683796, 6.14977434994634330761303279691, 6.67669776249369775278378642322, 6.71695877595844119838696897010, 7.14656901198569158147587521772, 7.64034471664453590170721498315, 7.957008804705988798366098842548, 8.216228123068362852020176476179