Properties

Label 4-5535-1.1-c1e2-0-0
Degree $4$
Conductor $5535$
Sign $1$
Analytic cond. $0.352916$
Root an. cond. $0.770757$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 2·7-s − 3·8-s + 9-s + 10-s + 3·11-s + 12-s − 2·13-s − 2·14-s − 15-s + 16-s + 5·17-s − 18-s − 20-s + 2·21-s − 3·22-s + 2·23-s − 3·24-s − 2·25-s + 2·26-s + 27-s + 2·28-s − 7·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.755·7-s − 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.904·11-s + 0.288·12-s − 0.554·13-s − 0.534·14-s − 0.258·15-s + 1/4·16-s + 1.21·17-s − 0.235·18-s − 0.223·20-s + 0.436·21-s − 0.639·22-s + 0.417·23-s − 0.612·24-s − 2/5·25-s + 0.392·26-s + 0.192·27-s + 0.377·28-s − 1.29·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5535 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5535 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5535\)    =    \(3^{3} \cdot 5 \cdot 41\)
Sign: $1$
Analytic conductor: \(0.352916\)
Root analytic conductor: \(0.770757\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5535,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7384982947\)
\(L(\frac12)\) \(\approx\) \(0.7384982947\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 2 T + p T^{2} ) \)
41$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 6 T + p T^{2} ) \)
good2$D_{4}$ \( 1 + T + p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - 2 T - 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 3 T + 10 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 2 T - 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 5 T + 24 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$D_{4}$ \( 1 + 7 T + 52 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + T + 30 T^{2} + p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 11 T + 68 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 7 T + 50 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 7 T + 62 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$D_{4}$ \( 1 + 10 T + 110 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 19 T + 208 T^{2} - 19 p T^{3} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$D_{4}$ \( 1 + T + 102 T^{2} + p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 3 T + 48 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$D_{4}$ \( 1 + 8 T + 62 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 4 T + 70 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.2858147064, −16.9930010744, −16.5147548082, −15.6538647405, −15.4277115023, −14.7191580717, −14.5873040137, −13.8980756593, −13.3112832684, −12.3378224341, −12.1231897724, −11.5465869042, −11.0853383860, −10.1814642814, −9.77673915210, −9.04365437581, −8.63346928016, −8.07545206138, −7.23562029799, −6.98905810761, −5.86021002683, −5.09694664683, −3.95672779865, −3.17630182360, −1.81712859369, 1.81712859369, 3.17630182360, 3.95672779865, 5.09694664683, 5.86021002683, 6.98905810761, 7.23562029799, 8.07545206138, 8.63346928016, 9.04365437581, 9.77673915210, 10.1814642814, 11.0853383860, 11.5465869042, 12.1231897724, 12.3378224341, 13.3112832684, 13.8980756593, 14.5873040137, 14.7191580717, 15.4277115023, 15.6538647405, 16.5147548082, 16.9930010744, 17.2858147064

Graph of the $Z$-function along the critical line