Properties

Label 4-546e2-1.1-c1e2-0-29
Degree $4$
Conductor $298116$
Sign $1$
Analytic cond. $19.0081$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 3·9-s − 2·12-s + 6·13-s + 16-s + 4·17-s + 16·23-s − 6·25-s − 4·27-s − 4·29-s + 3·36-s − 12·39-s − 8·43-s − 2·48-s + 49-s − 8·51-s + 6·52-s + 12·53-s + 12·61-s + 64-s + 4·68-s − 32·69-s + 12·75-s + 5·81-s + 8·87-s + 16·92-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 9-s − 0.577·12-s + 1.66·13-s + 1/4·16-s + 0.970·17-s + 3.33·23-s − 6/5·25-s − 0.769·27-s − 0.742·29-s + 1/2·36-s − 1.92·39-s − 1.21·43-s − 0.288·48-s + 1/7·49-s − 1.12·51-s + 0.832·52-s + 1.64·53-s + 1.53·61-s + 1/8·64-s + 0.485·68-s − 3.85·69-s + 1.38·75-s + 5/9·81-s + 0.857·87-s + 1.66·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 298116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(298116\)    =    \(2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(19.0081\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 298116,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.675019172\)
\(L(\frac12)\) \(\approx\) \(1.675019172\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( ( 1 + T )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 - 6 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.964617363597458662832720006765, −8.356918966632091922574869118017, −7.78249907504316350377739128427, −7.30413306038065925571803859155, −6.84552480602986516155667793601, −6.50995416203766137108906926807, −5.94122016189281733370585672798, −5.33985014787602837985094112170, −5.31567853187232470908018483085, −4.47695643349088345789887691529, −3.62482887081886485478101246558, −3.47145333357673570260660471710, −2.49738125642812316298615788516, −1.45112495973791681767006881356, −0.926744370121951468387320874015, 0.926744370121951468387320874015, 1.45112495973791681767006881356, 2.49738125642812316298615788516, 3.47145333357673570260660471710, 3.62482887081886485478101246558, 4.47695643349088345789887691529, 5.31567853187232470908018483085, 5.33985014787602837985094112170, 5.94122016189281733370585672798, 6.50995416203766137108906926807, 6.84552480602986516155667793601, 7.30413306038065925571803859155, 7.78249907504316350377739128427, 8.356918966632091922574869118017, 8.964617363597458662832720006765

Graph of the $Z$-function along the critical line