L(s) = 1 | − 9·4-s − 9·9-s + 24·11-s + 17·16-s + 184·19-s + 116·29-s − 448·31-s + 81·36-s + 36·41-s − 216·44-s − 49·49-s − 760·59-s + 1.43e3·61-s + 423·64-s − 1.92e3·71-s − 1.65e3·76-s − 1.79e3·79-s + 81·81-s + 2.07e3·89-s − 216·99-s + 92·101-s + 756·109-s − 1.04e3·116-s − 2.23e3·121-s + 4.03e3·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 9/8·4-s − 1/3·9-s + 0.657·11-s + 0.265·16-s + 2.22·19-s + 0.742·29-s − 2.59·31-s + 3/8·36-s + 0.137·41-s − 0.740·44-s − 1/7·49-s − 1.67·59-s + 3.01·61-s + 0.826·64-s − 3.20·71-s − 2.49·76-s − 2.55·79-s + 1/9·81-s + 2.47·89-s − 0.219·99-s + 0.0906·101-s + 0.664·109-s − 0.835·116-s − 1.67·121-s + 2.92·124-s + 0.000698·127-s + 0.000666·131-s + ⋯ |
Λ(s)=(=(275625s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(275625s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
275625
= 32⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
959.512 |
Root analytic conductor: |
5.56560 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 275625, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.361255116 |
L(21) |
≈ |
1.361255116 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+p2T2 |
| 5 | | 1 |
| 7 | C2 | 1+p2T2 |
good | 2 | C22 | 1+9T2+p6T4 |
| 11 | C2 | (1−12T+p3T2)2 |
| 13 | C22 | 1−3494T2+p6T4 |
| 17 | C22 | 1+8130T2+p6T4 |
| 19 | C2 | (1−92T+p3T2)2 |
| 23 | C22 | 1−11790T2+p6T4 |
| 29 | C2 | (1−2pT+p3T2)2 |
| 31 | C2 | (1+224T+p3T2)2 |
| 37 | C22 | 1−79990T2+p6T4 |
| 41 | C2 | (1−18T+p3T2)2 |
| 43 | C22 | 1−43414T2+p6T4 |
| 47 | C22 | 1−164382T2+p6T4 |
| 53 | C22 | 1+270762T2+p6T4 |
| 59 | C2 | (1+380T+p3T2)2 |
| 61 | C2 | (1−718T+p3T2)2 |
| 67 | C22 | 1−431782T2+p6T4 |
| 71 | C2 | (1+960T+p3T2)2 |
| 73 | C22 | 1+358322T2+p6T4 |
| 79 | C2 | (1+896T+p3T2)2 |
| 83 | C22 | 1−953478T2+p6T4 |
| 89 | C2 | (1−1038T+p3T2)2 |
| 97 | C22 | 1−1332542T2+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.42595755866739323090356494508, −10.25933895455305968310546091819, −9.674178732454685000049996961408, −9.227145245004230714359924725357, −8.887350438553412334698872153535, −8.809394589780622704061818389405, −7.85908873739547548724140952246, −7.66615696543583308656028630782, −7.08702854628003906995801771606, −6.63258564425627448251898906408, −5.88921960399178111643206010912, −5.34578897225955341319423305355, −5.24910831615715771093284791001, −4.38375148537717703945141083609, −4.04907078036679444790608634026, −3.32461736289031074119610053593, −2.97792479975793590736842334955, −1.89776166478418392284370755303, −1.18480633670555135579211835896, −0.40926267412199916161492296753,
0.40926267412199916161492296753, 1.18480633670555135579211835896, 1.89776166478418392284370755303, 2.97792479975793590736842334955, 3.32461736289031074119610053593, 4.04907078036679444790608634026, 4.38375148537717703945141083609, 5.24910831615715771093284791001, 5.34578897225955341319423305355, 5.88921960399178111643206010912, 6.63258564425627448251898906408, 7.08702854628003906995801771606, 7.66615696543583308656028630782, 7.85908873739547548724140952246, 8.809394589780622704061818389405, 8.887350438553412334698872153535, 9.227145245004230714359924725357, 9.674178732454685000049996961408, 10.25933895455305968310546091819, 10.42595755866739323090356494508