L(s) = 1 | − 1.67e7·4-s + 1.66e12·9-s − 2.24e13·11-s + 2.81e14·16-s − 5.97e15·19-s + 4.24e18·29-s + 8.45e18·31-s − 2.79e19·36-s − 3.23e20·41-s + 3.77e20·44-s + 2.37e21·49-s − 2.42e22·59-s − 4.06e22·61-s − 4.72e21·64-s + 2.68e23·71-s + 1.00e23·76-s − 7.64e23·79-s + 2.06e24·81-s + 1.68e24·89-s − 3.74e25·99-s + 1.32e25·101-s − 9.72e25·109-s − 7.11e25·116-s + 1.62e26·121-s − 1.41e26·124-s + 127-s + 131-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 1.96·9-s − 2.15·11-s + 1/4·16-s − 0.619·19-s + 2.22·29-s + 1.92·31-s − 0.984·36-s − 2.23·41-s + 1.07·44-s + 1.76·49-s − 1.77·59-s − 1.96·61-s − 1/8·64-s + 1.93·71-s + 0.309·76-s − 1.45·79-s + 2.87·81-s + 0.721·89-s − 4.25·99-s + 1.17·101-s − 3.31·109-s − 1.11·116-s + 1.49·121-s − 0.963·124-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2500 ^{s/2} \, \Gamma_{\C}(s+25/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(2.875008008\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.875008008\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69153528165787971105627668688, −10.50689703299630834892066667024, −10.15417686533940605923419673761, −9.726858456026688443134010276292, −8.887756914342835971782710552495, −8.276248078726072387486559006916, −7.86878182171569829002187791916, −7.42729367330955195762598628777, −6.54124816270118636361090111646, −6.43271720711638530179298423396, −5.20602737546580880107925699312, −5.06925420225393419449581586950, −4.31385626968626866628725584132, −4.20696234952478921706195446948, −2.97633327446984490235084131450, −2.89091712956766744060535347024, −1.99708276503993726520539609957, −1.49527397258355509241562272706, −0.78418962322735280677430921680, −0.40398329640337315461319682551,
0.40398329640337315461319682551, 0.78418962322735280677430921680, 1.49527397258355509241562272706, 1.99708276503993726520539609957, 2.89091712956766744060535347024, 2.97633327446984490235084131450, 4.20696234952478921706195446948, 4.31385626968626866628725584132, 5.06925420225393419449581586950, 5.20602737546580880107925699312, 6.43271720711638530179298423396, 6.54124816270118636361090111646, 7.42729367330955195762598628777, 7.86878182171569829002187791916, 8.276248078726072387486559006916, 8.887756914342835971782710552495, 9.726858456026688443134010276292, 10.15417686533940605923419673761, 10.50689703299630834892066667024, 10.69153528165787971105627668688