Properties

Label 4-507e2-1.1-c1e2-0-25
Degree $4$
Conductor $257049$
Sign $-1$
Analytic cond. $16.3896$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 9-s − 3·16-s − 2·17-s − 4·23-s + 3·25-s − 14·29-s + 36-s − 12·43-s + 6·49-s − 22·53-s + 2·61-s − 7·64-s − 2·68-s − 8·79-s + 81-s − 4·92-s + 3·100-s + 2·101-s + 12·103-s + 12·107-s − 10·113-s − 14·116-s − 2·121-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 1/2·4-s + 1/3·9-s − 3/4·16-s − 0.485·17-s − 0.834·23-s + 3/5·25-s − 2.59·29-s + 1/6·36-s − 1.82·43-s + 6/7·49-s − 3.02·53-s + 0.256·61-s − 7/8·64-s − 0.242·68-s − 0.900·79-s + 1/9·81-s − 0.417·92-s + 3/10·100-s + 0.199·101-s + 1.18·103-s + 1.16·107-s − 0.940·113-s − 1.29·116-s − 0.181·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 257049 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 257049 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(257049\)    =    \(3^{2} \cdot 13^{4}\)
Sign: $-1$
Analytic conductor: \(16.3896\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 257049,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13 \( 1 \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 53 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 + 9 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 49 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.650001915547516127708968168795, −8.254312306204594442663740138509, −7.64830789971015885999624459773, −7.24284512977827471313557365200, −6.89695511683785395962493269837, −6.19987347920647555245778860339, −6.02542306843297483164581786835, −5.17000017954860320631534903426, −4.79061112061585039281209559118, −4.11886089601568935163628455261, −3.56967166346421752643069142460, −2.91773453960743377742523935696, −2.03598784293238748245786017561, −1.65401027593800212162746376412, 0, 1.65401027593800212162746376412, 2.03598784293238748245786017561, 2.91773453960743377742523935696, 3.56967166346421752643069142460, 4.11886089601568935163628455261, 4.79061112061585039281209559118, 5.17000017954860320631534903426, 6.02542306843297483164581786835, 6.19987347920647555245778860339, 6.89695511683785395962493269837, 7.24284512977827471313557365200, 7.64830789971015885999624459773, 8.254312306204594442663740138509, 8.650001915547516127708968168795

Graph of the $Z$-function along the critical line